Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclopropanes Michael addition

The structurally related optically active a-acyl vinyl p-tolyl sulfoxide 269 underwent asymmetric cyclopropanation. Michael addition of the carbanion of bromomalonate to 269 and the subsequent intramolecular alkylation yielded the corresponding optically active a-acyl-cyclopropane 271, with a high degree of diastereoselectivity (Scheme 70).142 It was proposed that the stereochemical outcome of the reaction can be rationalized by transition state 270, in which there is chelation of the oxygen atom of the carbonyl and sulfinyl groups to the metal cation. [Pg.205]

Key features of the cyclopropanation include the ylide acting as a mild base to isomerize the 1,2-dioxines into cis-y-hydroxy enones, followed by Michael addition of the ylide and last by cyclization of the intermediate enolate [35]. It must be noted that the trans-y-hydroxyenones do not give the cyclopropanation. [Pg.48]

In addition to a-additions to isocyanides, copper oxide-cyclohexyl isocyanide mixtures are catalysts for other reactions including olefin dimerization and oligomerization 121, 125, 126). They also catalyze pyrroline and oxazoline formation from isocyanides with a protonic a-hydrogen (e.g., PhCH2NC or EtOCOCHjNC) and olefins or ketones 130), and the formation of cyclopropanes from olefins and substituted chloromethanes 131). The same catalyst systems also catalyze Michael addition reactions 119a). [Pg.49]

Although the base-catalyzed addition of nitroalkanes to electron-deficient olefins has been extensively used in organic synthesis (see Michael addition Chapter 4), it is only recently that the reaction has been extended to the cyclopropanation reaction. In 1978, it was reported that the anion of nitromethane reacts with certain highly electron-deficient olefins to produce cyclopropanes in good yield (Eq. 7.36).36 More recently, this reaction has been extended to more general cyclopropanations, as shown in Eqs. 7.37 and 7.38, in which potassium salts of nitroalkanes are employed in DMSO as alkylidene transfer reagents.37-39... [Pg.191]

Alumina-supported KF is an effective reagent for Michael addition of nitroalkanes to electron-deficient olefins. Subsequent cycloalkylations afford cyclopropanes.37 However, the reaction of a, 3-unsaturated ketones with nitroalkanes in the presence of KF-A1203 in acetonitrile gives 4,5-dihydrofuranes (Eq. 7.39).40... [Pg.191]

Reaction of the regioisomers of tetrahydrophosphinine oxide (51) with Na0H-H20-CHCl3 under phase-transfer conditions was found to afford tetrahydrophosphepine oxides (52) through an unexpected path involving isomerization of (51) and cyclopropanation via Michael addition of CCls. (Scheme 21). [Pg.505]

Moreover, if R is an aryl or t-butyl group, by warming at room temperature after the treatment with LDA at -78°C, triacyl-substituted cyclopropanes are formed via a Michael addition involving the intermediates bis-ylide and bis-acylethylene. ... [Pg.201]

The elfectiveness of imidazolidinone of type 11 was confirmed by successful application to a broad range of chemical transformations, including cycloadditions, conjugate additions, Friedel-Crafts alkylations, Mukaiyama-Michael additions, hydrogenations, cyclopropanations, and epoxidations. A summary of these enantio-selective iminium catalyzed processes is provided by reaction subclass. [Pg.321]

Keywords Absolute configuration, Amines, Amino acids, Carbenes, Cascade reactions, 2-chloro-2-cyclopropylideneacetates. Combinatorial libraries. Cycloadditions, Cyclobutenes, Cyclopropanes, Diels-Alder reactions. Heterocycles, Michael additions. Nitrones, Nucleophilic substitutions, Peptidomimetics, Palladium catalysis. Polycycles, Solid phase synthesis, Spiro compounds. Thiols... [Pg.149]

There is no published example of a cyclopropanation of the double bond in chlorocyclopropylideneacetate 1-Me with retention of the chlorine atom. Thus, attempted cyclopropanations under Simmons-Smith [37] or Corey [38] conditions failed [25]. The treatment of the highly reactive methylenecyclopropane derivative 1-Me with dimethoxycarbene generated by thermal decomposition of 2,2-dimethoxy-A -l,3,4-oxadiazoline 26 (1.5 equiv. of 26,PhH, 100 °C,24 h),gave a complex mixture of products (Scheme 7) [39], yet the normal cycloadduct 28 was not detected. The formation of compounds 29 - 33 was rationalized via the initially formed zwitterion 27, resulting from the Michael addition of the highly nucleophilic dimethoxycarbene to the C,C-double bond of 1-Me. The ring closure of 27 to the normal product 28 is probably reversible, and 27 can rearrange or add a second dimethoxycarbene moiety and a molecule of acetone to form 33. [Pg.158]

As a potential approach towards enantiomerically pure amino acids containing a cyclopropane ring, Michael additions of enantiomerically pure chiral ammonia equivalents 95-100 have been examined (Fig. 5). [Pg.176]

Figure 9.73. Enantioselective Mukaiyama-Michael addition of enolsilanes. TABLE 9.39. CYCLOPROPANATIONS WITH SULEUR YLIDES"... Figure 9.73. Enantioselective Mukaiyama-Michael addition of enolsilanes. TABLE 9.39. CYCLOPROPANATIONS WITH SULEUR YLIDES"...
Cyclopropane ring formation has been brought about by Michael addition initiated ring closure (sometimes called MIRC). The reaction of methyl 4-bromocrotonate (3) with different nucleophiles either gives the SN2-displacement product 4 or the Michael addition intermediate 5 which finally forms the cyclopropane carboxylate 697 (the configuration of 6 has not been determined). This reaction has been studied with different nucleophiles in the solvent systems tetrahydrofuran-HMPA (20 1) and tetrahydrofuran the bromocrotonate 3 was reacted with 1 equivalent of a 1 M solution of the lithium enolates at —78 for 12 h at room temperature97. [Pg.748]

The dependence of the counterion and of the solvent99 was studied in the addition of sec-butyl and tert-butyl mercaptide to methyl 4-bromocrotonate (3). The highest yield of the Michael addition induced cyclopropane product 10 was observed with lithium as counterion in dichloromethane or pentane as solvent. [Pg.748]

Tandem intramolecular Michael addition - intramolecular alkylation can lead to cyclopropanes. Matthew J. Gaunt of the University of Cambridge has shown (Angew. Chem. Int. Ed. 2004,43, 2681) that this intramolecular Michael addition also responds to organocatalysis. In this case, the catalyst, a quinine-derived amine, covalently binds to the substrate, then is released at the end of the reaction. [Pg.201]

Michael acceptors which carry a good leaving group at the a-carbon atom or whose electron-withdrawing group itself can serve as the leaving group may be cyclopropanated by active methylene compounds under basic conditions via a prototropic shift subsequent to the Michael addition as outlined in equation 139. Thus, the basicity of the carbanions involved must be balanced to allow the requisite prototropic shift otherwise, the reaction will be very slow or will not work. [Pg.303]

Another type of chiral Michael acceptor, the oxazepine derivatives (47), is prepared by condensation of the (-)-ephedrine-derived malonic acid derivative (46) with aldehydes (Scheme 18).51 52 Treatment of (47) with a variety of Grignard reagents in the presence of NiCh affords, after hydrolysis and decarboxylation, the 3-substituted carboxylic acids (48), in most cases with more than 90% ee. Diastereoselective Michael additions to (47) were also used for the preparation of optically active cyclopropane derivatives (49)53 and P-substituted-y-butyrolactones (50 Scheme 18).54 A total synthesis of indolmycin is based on this methodology.55... [Pg.206]

In the first attempts to use a chiral a-sulfinyi ester enolate as donor in Michael additions to a -un-saturated esters, only low selectivities were observed.185 186 Better results are obtained when the a-lithio sulfoxide (174), a chiral acyl anion equivalent, is employed. Conjugate addition of (174) to cyclopent-enone derivatives occurs with reasonably high degrees of asymmetric induction, as exemplified by the preparation of the 11-deoxy prostanoid (175 Scheme 63).187 188 Chiral oxosulfonium ylides and chiral li-thiosulfoximines can be used for the preparation of optically active cyclopropane derivatives (up to 49% ee) from a, -unsaturated carbonyl compounds.189... [Pg.226]

The synthetic implications of this discovery were slow to be exploited. Base-initiated dimerizations of 2-cycloalkenones, known to give crystalline solids,3233 remained puzzling for some time before conjugate additions were suggested to account for some of the possible products 34 indeed, the product of base-catalyzed dimerization of 4,4-dimethyl-2-cyclopentenone, which proceeds via a double Michael addition sequence, was not identified until 1969 (Scheme 2).35 An unanticipated cyclopropanation reaction of acrylaldehyde36 37 using ethyl bromomalonate and proceeding by means of a similar Michael addi-tion-Sw enolate alkylation represents an early synthetic use of tandem vicinal difunctionalization. [Pg.239]

A related allylic C-H insertion that has considerable promise for strategic organic synthesis is the reaction with enol silyl ethers [23]. The resulting silyl-protected 1,5-dicarbonyls would otherwise typically be formed by means of a Michael addition. Even though with ethyl diazoacetates vinyl ethers are readily cyclopropanated [l],such reactions are generally disfavored in trisubstituted vinyl ethers with the sterically crowded donor/acceptor carbenoids [23]. Instead, C-H insertion predominates. Again, if sufficient size differentiation exists at the C-H activation site, highly diastereoselective and enantioselective reactions can be achieved as illustrated in the reaction of 20 with 17 to form 21 [23]. [Pg.87]


See other pages where Cyclopropanes Michael addition is mentioned: [Pg.102]    [Pg.102]    [Pg.316]    [Pg.141]    [Pg.87]    [Pg.227]    [Pg.5]    [Pg.135]    [Pg.61]    [Pg.79]    [Pg.117]    [Pg.161]    [Pg.168]    [Pg.205]    [Pg.696]    [Pg.777]    [Pg.1]    [Pg.2]    [Pg.976]    [Pg.391]   


SEARCH



Cyclopropanes additions

Cyclopropanes using Michael addition

© 2024 chempedia.info