Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclopropane carboxylate, Allyl

Semicorrinato)copper catalysts have also been used for intramolecular cyclopropanation reactions of alkenyl diazo ketones (eq 9 and eq 10). In this case the (semicorrinato)copper catalyst derived from complex (5) proved to be superior to related methylene-bis(oxazoline)copper complexes. Interestingly, analogous allyl diazoacetates react with markedly lower enantioselectivity under these conditions, in contrast to the results obtained with chiral Rh complexes which are excellent catalysts for intramolecular cyclopropanations of allyl diazoacetates but give poor enantioselectivities with alkenyl diazo ketones (see Dirhodium(II) Tetrakis(methyl 2-pyrrolidone-5(S -carboxylate ) Moderate enantioselectivities in the reactions... [Pg.106]

Rhodium complexes generated from A-functionalized (S)-proline 3.60 [933, 934, 935] or from methyl 2-pyrrolidone-5-carboxylates 3.61 [936, 937, 938] catalyze the cyclopropanation of alkenes by diazoesters or -ketones. Diastereoisomeric mixtures of Z- and E-cydopropylesters or -ketones are usually formed, but only the Z-esters exhibit an interesting enantioselectivity. However, if intramolecular cyclopropanation of allyl diazoacetates is performed with ligand 3.61, a single isomer is formed with an excellent enantiomeric excess [936,937], The same catalyst also provides satisfactory results in the cyclopropanation of alkynes by menthyl diazoacetate [937, 939] or in the intramolecular insertion of diazoesters into C-H bonds [940]. [Pg.136]

On this basis, in a joint effort with Martin and Muller (1991a), Doyle developed a series of dinuclear rhodium 2-pyrrolidone-5-carboxylate complexes that might give better enantiomeric ratios in cyclopropanations (see also Muller and Polleux, 1994). This was indeed the case for a series of intramolecular cyclopropanations of allyl diazoacetates with the complex Rh2((55)-MEPY)4 obtained with chiral methyl 2-pyrrolidone-5-carboxylate (MEPY = 8.178) an ee between 65 and 94 o was found. Doyle et al. (1993 a) continued that work with additional inter- and intramolecular cyclopropanations as well as with intramolecular CH insertions. Doyle and his coworkers again obtained good-to-excellent enantioselectivity with the same catalyst. Examples are given in Schemes 8-75 to 8-77. [Pg.378]

Asymmetric cyclopropanation. The ability to effect ligand exchange between rhodium(II) acetate and various amides has lead to a search for novel, chiral rhodium(II) catalysts for enantioselective cyclopropanation with diazo carbonyl compounds. The most promising to date are prepared from methyl (S)- or (R)-pyroglutamate (1), [dirhodium(ll) tetrakis(methyl 2-pyrrolidone-5-carboxylate)]. Thus these complexes, Rh2[(S)- or (R)-l]4, effect intramolecular cyclopropanation of allylic diazoacetates (2) to give the cyclo-propanated y-lactones 3 in 65 S 94% ee (equation 1). In general, the enantioselectivity is higher in cyclopropanation of (Z)-alkenes. [Pg.303]

It has been pointed out earlier that the anti/syn ratio of ethyl bicyclo[4.1,0]heptane-7-carboxylate, which arises from cyclohexene and ethyl diazoacetate, in the presence of Cul P(OMe)3 depends on the concentration of the catalyst57). Doyle reported, however, that for most combinations of alkene and catalyst (see Tables 2 and 7) neither concentration of the catalyst (G.5-4.0 mol- %) nor the rate of addition of the diazo ester nor the molar ratio of olefin to diazo ester affected the stereoselectivity. Thus, cyclopropanation of cyclohexene in the presence of copper catalysts seems to be a particular case, and it has been stated that the most appreciable variations of the anti/syn ratio occur in the presence of air, when allylic oxidation of cyclohexene becomes a competing process S9). As the yields for cyclohexene cyclopropanation with copper catalysts [except Cu(OTf)2] are low (Table 2), such variations in stereoselectivity are not very significant in terms of absolute yields anyway. [Pg.108]

Doyle, Martin, Muller, and co-workers communicated exceptional enantiocontrol for intramolecular cyclopropanation of a series of allyl diazoacetates (Eq. 5.16) by using dirhodium(II) tetrakis(methyl 2-oxopyrrolidine-5-carboxylates), Rh2(MEPY)4, in either their R- or S-configurations [87], and they have fully elaborated these results in a subsequent report [88],... [Pg.211]

Dirhodium(II) tetrakis(carboxamides), constructed with chiral 2-pyrroli-done-5-carboxylate esters so that the two nitrogen donor atoms on each rhodium are in a cis arrangement, represent a new class of chiral catalysts with broad applicability to enantioselective metal carbene transformations. Enantiomeric excesses greater than 90% have been achieved in intramolecular cyclopropanation reactions of allyl diazoacetates. In intermolecular cyclopropanation reactions with monosubsti-tuted olefins, the cis-disubstituted cyclopropane is formed with a higher enantiomeric excess than the trans isomer, and for cyclopropenation of 1-alkynes extraordinary selectivity has been achieved. Carbon-hydro-gen insertion reactions of diazoacetate esters that result in substituted y-butyrolactones occur in high yield and with enantiomeric excess as high as 90% with the use of these catalysts. Their design affords stabilization of the intermediate metal carbene and orientation of the carbene substituents for selectivity enhancement. [Pg.45]

The stereoselectivity of this reaction rises when more bulky nucleophiles are employed (compare entries 7, 3,1, and 5). This is most impressively demonstrated by comparison of the y-lactol reduction with its allylation leading to 205 or 206, respectively (Scheme 10). Formation of tetrahydrofuran derivative 208, dihydrofuran 209, or unsaturated a-methylen-y-butyrolactone 207 illustrate that various modes of straightforward work-up procedures provide two different five membered heterocycles 93 b-96). A second example without the geminal dialkyl substitution at C-3 of the siloxy-cyclopropane depicted in Eq. 86 making available the annulated tetrahydrofuran-3-carboxylate 210 underlines the generality of the C-C-bond forming hydroxyalkylation reaction via ester enolates. [Pg.122]

Photochemical Fe(CO)5-induced rearrangement of silylated allyl amine 9 gave N-silylated enamine 1015, which on subsequent Cu-catalyzed cyclopropanation by methyl diazoacetate afforded cyclopropane derivative 11. The use of an optically active catalyst gave an asymmetric induction of 56% ee for the cis isomer and 20% ee for the trans isomer. Further acid-induced ring cleavage afforded the -formyl ester 12, whereas reduction and desilylation produced aminocyclopropane carboxylic acid 13 (equation 2). [Pg.994]

This collection begins with a series of three procedures illustrating important new methods for preparation of enantiomerically pure substances via asymmetric catalysis. The preparation of 3-[(1S)-1,2-DIHYDROXYETHYL]-1,5-DIHYDRO-3H-2.4-BENZODIOXEPINE describes, in detail, the use of dihydroquinidine 9-0-(9 -phenanthryl) ether as a chiral ligand in the asymmetric dihydroxylation reaction which is broadly applicable for the preparation of chiral dlols from monosubstituted olefins. The product, an acetal of (S)-glyceralcfehyde, is itself a potentially valuable synthetic intermediate. The assembly of a chiral rhodium catalyst from methyl 2-pyrrolidone 5(R)-carboxylate and its use in the intramolecular asymmetric cyclopropanation of an allyl diazoacetate is illustrated in the preparation of (1R.5S)-()-6,6-DIMETHYL-3-OXABICYCLO[3.1. OJHEXAN-2-ONE. Another important general method for asymmetric synthesis involves the desymmetrization of bifunctional meso compounds as is described for the enantioselective enzymatic hydrolysis of cis-3,5-diacetoxycyclopentene to (1R,4S)-(+)-4-HYDROXY-2-CYCLOPENTENYL ACETATE. This intermediate is especially valuable as a precursor of both antipodes (4R) (+)- and (4S)-(-)-tert-BUTYLDIMETHYLSILOXY-2-CYCLOPENTEN-1-ONE, important intermediates in the synthesis of enantiomerically pure prostanoid derivatives and other classes of natural substances, whose preparation is detailed in accompanying procedures. [Pg.294]

It is clear that during nucleophilic reactions of allylic halides carrying one EWG various other reaction pathways can occur in addition to MIRC reactions, e.g. addition, substitution, rearrangement and eliminationFor example, reaction of ethyl 4-bromocrotonate (273) with sodium ethoxide in ethanol only affords minor amounts of the 2-ethoxycyclopropane carboxylate (274) in addition to the substitution (276) and the addition-substitution (275) product (equation 83). Nevertheless, a cyclopropane... [Pg.485]

Allyldiethylamine behaves similarly, but the yields are low since neither the starting amine nor the products are stable to the reaction conditions. For the efficiency of the cyclopropanation of the allylic systems under discussion, a comparison can be made between the triplet-sensitized photochemical reaction and the process carried out in the presence of copper or rhodium catalysts whereas with allyl halides and allyl ethers, the transition metal catalyzed reaction often produces higher yields (especially if tetraacetatodirhodium is used), the photochemical variant is the method of choice for allyl sulfides. The catalysts react with allyl sulfides (and with allyl selenides and allylamines, for that matter) exclusively via the ylide pathway (see Section 1.2.1.2.4.2.6.3.3. and Houben-Weyl, Vol. E19b, pll30). It should also be noted that the purely thermal decomposition of dimethyl diazomalonate in allyl sulfides produces no cyclopropane, but only the ylide-derived product in high yield.Very few cyclopropanes have been synthesized by photolysis of other diazocarbonyl compounds than a-diazo esters and a-diazo ketones, although this should not be impossible in several cases (e.g. a-diazo aldehydes, a-diazocarboxamides). Irradiation of a-diazo-a-(4-nitrophenyl)acetic acid in a mixture of 2-methylbut-2-ene and methanol gave mainly l-(4-nitrophenyl)-2,2,3-trimethylcyclo-propane-1-carboxylic acid (19, 71%) in addition to some O-H insertion product (10%). ... [Pg.440]

Interestingly, some nucleophiles attack the central carbon of the r-allyl system 198 to form the palladacyclobutane 199 and reductive elimination produces the cyclopropanes 200. Li enolates of carboxylic acids are such nucleophiles for the eyclopropanation [89,90], The Li enolate of the ketone 201 reacts with tt-aUylpalladium chloride to afford the a-cyclopropyl ketone 202 in the presence of TMEDA under CO atmosphere [91]. [Pg.55]

The other significant variation of the prototypical Kulinkovich reaction is the so-called Kulinkovich-de Meijere reaction, where de Meijere extended the substrates from esters to amides. Other carboxylic acid derivatives including (cyclic) carbonate, imides, and nitriles also react with the key Kulinkovich intermediate. Szymoniak developed an efficient new synthesis of cyclopropanes via hydrozirconation of allylic ethers (e.g., using Cp2Zr(H)Cl) followed by addition of a Lewis acid (e.g., BFa OEta). Casey et al. further investigated the stereochemistry of this interesting cyclopropanation reaction using deuterated allylic ethers. ... [Pg.16]


See other pages where Cyclopropane carboxylate, Allyl is mentioned: [Pg.573]    [Pg.510]    [Pg.510]    [Pg.12]    [Pg.672]    [Pg.87]    [Pg.353]    [Pg.29]    [Pg.79]    [Pg.143]    [Pg.207]    [Pg.312]    [Pg.11]    [Pg.464]    [Pg.535]    [Pg.368]    [Pg.341]    [Pg.136]    [Pg.834]    [Pg.834]    [Pg.204]    [Pg.357]    [Pg.906]    [Pg.205]    [Pg.123]    [Pg.1033]    [Pg.252]    [Pg.5241]    [Pg.153]    [Pg.834]    [Pg.11]    [Pg.893]   
See also in sourсe #XX -- [ Pg.10 ]




SEARCH



Allyl carboxylates

Allyl cyclopropanation

Allylic carboxylation

Allylic cyclopropanation

Carboxylates, allylation

Cyclopropane carboxylates

Cyclopropane- 1-carboxylate

© 2024 chempedia.info