Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclopentene alkene

The oxidation of simple internal alkenes is very slow. The clean selectiv oxidation of a terminal double bond in 40, even in the presence of an internt double bond, is possible under normal conditions[89,90]. The oxidation c cyclic alkenes is difficult, but can be carried out under selected condition Addition of strong mineral acids such as HCIO4, H2S04 and HBF4 accelerate the oxidation of cyclohexene and cyclopentene[48,91], A catalyst system 0 PdSO4-H3PM06W6Oii(j [92] or PdCF-CuCF m EtOH is used for the oxidatioi of cyclopentene and cyclohexene[93]. [Pg.28]

The dicarboxylation of cyclic alkenes is a useful reaction. All-c.vo-methyl-7-oxabicyclo(2.2.1]heptane-2,3,5,6-tetracarboxylate (233) was prepared from the cyclic alkene 232 using Pd on carbon and CuCh in MeOH at room temperature with high diastereoselectivity[216]. The dicarbonylation of cyclopentene... [Pg.52]

The cyclohexadiene derivative 130 was obtained by the co-cyclization of DMAD with strained alkenes such as norbornene catalyzed by 75[63], However, the linear 2 1 adduct 131 of an alkene and DMAD was obtained selectively using bis(maleic anhydride)(norbornene)palladium (124)[64] as a cat-alyst[65], A similar reaction of allyl alcohol with DMAD is catalyzed by the catalyst 123 to give the linear adducts 132 and 133[66], Reaction of a vinyl ether with DMAD gives the cyclopentene derivatives 134 and 135 as 2 I adducts, and a cyclooctadiene derivative, although the selectivity is not high[67]. [Pg.487]

Among the cases in which this type of kinetics have been observed are the addition of hydrogen chloride to 2-methyl-1-butene, 2-methyl-2-butene, 1-mefliylcyclopentene, and cyclohexene. The addition of hydrogen bromide to cyclopentene also follows a third-order rate expression. The transition state associated with the third-order rate expression involves proton transfer to the alkene from one hydrogen halide molecule and capture of the halide ion from the second ... [Pg.354]

The introducdon of heterodienes has extended the synthedc versatility of cyclokldmon teac-dons in organic synthesis. " Denmark and coworkers have developed the use of rutroalkenes as dienes in [4+2 cycloaddidon. Nitroalkenes react v/ith simple alkenes in the presence of SnCi, as a promoter. For example, the reacdon of tutrocyclohexene v/ith cyclopentene gives three products. The major product is ruiri-isoraer, which arises from an fixn approach of cyclopentene toward tutrocyclohexene fsee Eq. 8.94. ... [Pg.275]

The reaction of benzopentathiepin with alkenes [(fl-but- -ene, ( )-hex-3-ene, cyclopentene or cyclohexene] in the presence of the boron trifluoride-diethyl ether complex results in the formation of 3,4-dihydro-l,2,5-benzotrithiepins, e.g. formation of 3.407... [Pg.493]

Scheme 36 Synthesis of donor-acceptor-substituted cyclopropanes 165 and cyclopentenes 166 from complexes 163 and acceptor-substituted alkenes 164 [115,116]... Scheme 36 Synthesis of donor-acceptor-substituted cyclopropanes 165 and cyclopentenes 166 from complexes 163 and acceptor-substituted alkenes 164 [115,116]...
The aziridination of alkenes catalysed by [CuCl(IPr)] complex 150 was used in a key step of the total synthesis of (+)-agelastatin 152 (Scheme 5.39) [44], The aziridination occurs in presence of 50 mol% of 150 in 52% yield. It is important to note that 150 was the only complex able to promote the aziridination of 149, an electron-deficient cyclopentene. [Pg.152]

Zinc-mediated reductive dimerization cyclization of 1,1-dicyano-alkenes occurs to give functionalized cyclopentenes in good yields under saturated aqueous NH4CI-THF solution at room temperature. The trans isomers are the major products (Eq. 10.38).89... [Pg.330]

As for cyclopropanation of alkenes with aryldiazomethanes, there seems to be only one report of a successful reaction with a group 9 transition metal catalyst Rh2(OAc)4 promotes phenylcyclopropane formation with phenyldiazomethane, but satisfactory yields are obtained only with vinyl ethers 4S) (Scheme 2). Cis- and trans-stilbene as well as benzalazine represent by-products of these reactions, and Rh2(OAc)4 has to be used in an unusually high concentration because the azine inhibits its catalytic activity. With most monosubstituted alkenes of Scheme 2, a preference for the Z-cyclopropane is observed similarly, -selectivity in cyclopropanation of cyclopentene is found. These selectivities are the exact opposite to those obtained in reactions of ethyl diazoacetate with the same olefins 45). Furthermore, they are temperature-dependent for example, the cisjtrcms ratio for l-ethoxy-2-phenylcyclopropane increases with decreasing temperature. [Pg.85]

There are only a few studies of the bromination products of congested alkenes. Such products generally consist of the corresponding allylic bromo-derivatives, which are consistent with /5-proton elimination by the counter-ion from the bromonium ion. For example, the ionic bromination of octamethyl-cyclopentene in CC14 leads exclusively to l,2-di(bromomethyl)hexamethyl-cyclopentene as in Scheme 12 (Mayr et al, 1986). Bromine addition (30) to... [Pg.250]

Tetrasubstituted Alkenes. Tetrasubstituted alkenes lacking electron-withdrawing substituents undergo facile ionic hydrogenation to alkanes in very good yields. Simple examples include 2,3-dimethyl-2-butene,208,214 1,2-dimethyl-cyclopentene, 1,2-dimethylcyclohexene,229 and A9(10)-octalin.126,204,212... [Pg.40]

OH radicals react very fast (almost in a diffusion-controlled rate) with simple alkenes (k = 7.0 x 109 for 1-butene or cyclopentene and 8.8 x 109 M 1 s 1 for cyclohexene) and there is almost no change for 1,3- or 1,4-cyclohexadiene. Cycloheptatriene reacts very fast with all the three radicals formed in the radiolysis of water k = 6 x 109 with eaq, 8 x 109 with H atoms and 1 x 101CI M 1 s 1 with hydroxyl radicals13. [Pg.328]

It took another decade however before the idea of developing a rhodium-catalyzed olefin hydroboration process came to fruition. This occurred in 1985 when Mannig and Noth reported the first examples of such a process.8 They discovered that Wilkinson s catalyst 2 was effective for the addition of catecholborane 1 to a range of alkenes and alkynes, as exemplified by cyclopentene 4 (Scheme 2). [Pg.840]

The optimized protocol has also been applied to a wide range of open-chain and cyclic dienes (for selected examples, see Table 11.11) [113], The latter generally give higher yields than non-terminal alkenes and cycloalkenes, except for strained ones such as JV-benzyl-pyrroline, cyclopentene, and norbornene (Table 11.10, entries 20—22). [Pg.410]

Sunlamp irradiation of butynyl iodide (6) in the presence of hexabutylditin generates an alkyl radical that reacts with an electron-deficient alkene (7) to form an (iodomethylene)cyclopentene (8) in moderate yield. This product can be reduced by Bu3SnH (AIBN) to the methylenecyclopentane (9).2... [Pg.174]

In 1965, Denney et al. (98) reported the reaction of a number of alkenes with ferf-butyl hydroperoxide (TBHP) and cupric salts of chiral acids. The use of ethyl camphorate copper complex 144 in the allylic oxidation of cyclopentene provides, upon reduction of the camphorate ester, the allylic alcohol in low yield and low selectivity, Eq. 82. The initial publication only provided the observed rotation of cyclopentenol, but comparison to subsequent literature values (99) reveals that this reaction proceeds in 12% ee and 43% yield (based on the metal complex). [Pg.53]

For rigid alkenes, triplet sensitisation brings about photocycloaddition via the 3(Jt,7t ) state. These reactions are neither concerted nor stereospecific. Cyclopentene produces a tricyclic dimer ... [Pg.157]

If cyclopentene would react pair-wise with 2-pentene, only one product would form, namely 2,7-decadiene, and a similar result for cyclodimers etc. of cyclopentene. If somehow, the alkylidene species would be transferred one by one, we would obtain a mixture of 2,7-nonadiene, 2,7-decadiene, and 2,7-undecadiene in a 1 2 1 ratio. The latter turned out to be the case, which led the authors to propose the participation of metal-carbene (metal alkylidene) intermediates [6], Via these intermediates the alkylidene parts of the alkenes are transferred one by one to an alkene. The mechanism is depicted in Figure 16.4. In the first step the reaction of two alkylidene precursors (ethylidene -bottom- and propylidene -top) with cyclopentene is shown. In the second step the orientation of the next 2-pentene determines whether nonadiene, decadiene or undecadiene is formed. It is clear that this leads to a statistical mixture, all rates being exactly equal, which need not be the case. Sometimes the results are indeed not the statistical mixture as some combinations of metal carbene complex and reacting alkene may be preferred, but it is still believed that a metal-carbene mechanism is involved. Deuterium labelling of alkenes by Gmbbs instead of differently substituted alkenes led to the same result as the experiments with the use of 2-pentene [7],... [Pg.340]

In fluorosulfonic acid the anodic oxidation of cyclohexane in the presence of different acids (RCO2H) leads to a single product with a rearranged carbon skeleton, a 1-acyl-2-methyl-1-cyclopentene (1) in 50 to 60% yield (Eq. 2) [7, 8]. Also other alkanes have been converted at a smooth platinum anode into the corresponding a,-unsaturated ketones in 42 to 71% yield (Table 1) [8, 9]. Product formation is proposed to occur by oxidation of the hydrocarbon to a carbocation (Eq. 1 and Scheme 1) that rearranges and gets deprotonated to an alkene, which subsequently reacts with an acylium cation from the carboxylic acid to afford the a-unsaturated ketone (1) (Eq. 2) [8-10]. In the absence of acetic acid, for example, in fluorosulfonic acid/sodium... [Pg.128]

The kinetics of the catalytic oxidation of cyclopentene to glutaraldehyde by aqueous hydrogen peroxide and tungstic acid have been studied and a compatible mechanism was proposed, which proceeds via cyclopentene oxide and /3-hydroxycyclopentenyl hydroperoxide. " Monosubstituted heteropolytungstate-catalysed oxidation of alkenes by t-butyl hydroperoxide, iodosobenzene, and dioxygen have been studied a radical mechanism was proved for the reaction of alkenes with t-BuOOH and O2, but alkene epoxidation by iodosobenzene proceeds via oxidant coordination to the catalyst and has a heterolytic mechanism. ... [Pg.223]


See other pages where Cyclopentene alkene is mentioned: [Pg.2348]    [Pg.2348]    [Pg.1196]    [Pg.2348]    [Pg.2348]    [Pg.1196]    [Pg.23]    [Pg.95]    [Pg.156]    [Pg.460]    [Pg.521]    [Pg.354]    [Pg.54]    [Pg.947]    [Pg.77]    [Pg.13]    [Pg.913]    [Pg.129]    [Pg.22]    [Pg.50]    [Pg.80]    [Pg.913]    [Pg.151]    [Pg.137]    [Pg.395]    [Pg.249]    [Pg.10]    [Pg.466]    [Pg.233]    [Pg.42]   
See also in sourсe #XX -- [ Pg.551 ]




SEARCH



Cyclopenten

Cyclopentene

Cyclopentenes

© 2024 chempedia.info