Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclopentanone, 3-methyl

Iridium nanoparticles generated in l-n-butyl-3-methylimidazolium (BMI)-based ionic liquids were found to be excellent recyclable catalytic systems for the hydrogenation of a variety of substrates, including ketones such as simple ketones. The Ir nanoparticles were prepared by simple reduchon of [Ir(cod)Cl]2 dispersed in BMI-PFis at 75 °C under 4 atm of H2. Benzaldehyde, cyclopentanone, methyl butanone and derivatives were hydrogenated with almost complete conversion, with TOFs ranging from 17 to 96h under solventless conditions (substrate Ir ratio = 250, 75 °C, 4 atm FI2) [102]. [Pg.101]

Indicate the kind of equilibrium isotope effect (e.g., primary or secondary, a or j3, etc.) one would expect and predict the magnitude of the isotope effect on the equilibrium constant for the dissociation of cyclopentanone methyl hemiketal (108) to the ketone 109 and methanol (Figure 6.86). [Pg.407]

Ethylene, butene-1, isobutene, acetylene, CO2, CH4, CO, acetone, isopropylaldehyde, methacrolein, butyraldehyde, methyl ethyl ketone, benzene (trace), methyl isopropyl ketones, methyl isopropenyl ketone, diethyl ketone, methyl n-propenyl ketone, cyclopentanone, methyl... [Pg.491]

Oxidative rearrangement takes place in the oxidation of the 1-vinyl-l-cyclo-butanol 31, yielding the cyclopentenone derivative 32[84], Ring contraction to cyclopropyl methyl ketone (34) is observed by the oxidation of 1-methylcyclo-butene (33)[85], and ring expansion to cyclopentanone takes place by the reaction of the methylenecyclobutane 35. [86,87]... [Pg.27]

Diketones are readily transformed to cycHc derivatives, such as cyclopentanones and furans. In this manner, the fragrance dihydrojasmone (3-meth5l-2-pentyl-2-cyclopenten-l-one) is prepared by the base-catalyzed aldol condensation of 2,5-undecanedione. 2,5-Undecanedione is itself prepared from heptanal and methyl vinyl ketone in the presence of thiazoHum salts (329). i7j -Jasmone can be similarly prepared (330,331). [Pg.499]

Aldehydes and ketones such as acetaldehyde, ben2aldehyde, acetone, acetophenone, cyclohexanone, cyclopentanone, and methyl ethyl ketone have been condensed with CPD in the presence of alkaline agents to produce colored hilvene derivatives. A typical condensation with a ketone is depicted as follows ... [Pg.431]

Fig. 7.3. Crystal structures of some lithium etiolates of ketones. (A) Unsolvated hexameric enolate of methyl t-butyl ketone (B) tetrahydrofuran solvate of tetramer of enolate of methyl r-butyl ketone (C) tetrahydrofuran solvate of tetramer of enolate of cyclopentanone (D) dimeric enolate of 3,3-dimethyl-4-(r-butyldimethylsiloxy)-2-pentanone. (Structural diagrams are reproduced from Refs. 66-69.) by permission of the American Chemical Society and Verlag Helvetica Chimica Acta AG. Fig. 7.3. Crystal structures of some lithium etiolates of ketones. (A) Unsolvated hexameric enolate of methyl t-butyl ketone (B) tetrahydrofuran solvate of tetramer of enolate of methyl r-butyl ketone (C) tetrahydrofuran solvate of tetramer of enolate of cyclopentanone (D) dimeric enolate of 3,3-dimethyl-4-(r-butyldimethylsiloxy)-2-pentanone. (Structural diagrams are reproduced from Refs. 66-69.) by permission of the American Chemical Society and Verlag Helvetica Chimica Acta AG.
The reaction of methyl propiolate (82) with acyclic enamines produces acyclic dienamines (100), as was the case with dimethyl acetylenedicarboxylate, and the treatment of the pyrrolidine enamines of cycloheptanone, cyclooctanone, cycloundecanone, and cyclododecanone with methyl propiolate results in ring enlargement products (100,101). When the enamines of cyclohexanone are allowed to react with methyl propiolate, rather anomalous products are formed (100). The pyrrolidine enamine of cyclopentanone forms stable 1,2-cycloaddition adduct 83 with methyl propiolate (82). Adduct 83 rearranges to the simple alkylation product 84 upon standing at room temperature, and heating 83 to about 90° causes ring expansion to 85 (97,100). [Pg.231]

The formation of an enamine from an a,a-disubstituted cyclopentanone and its reaction with methyl acrylate was used in a synthesis of clovene (JOS). In a synthetic route to aspidospermine, a cyclic enamine reacted with methyl acrylate to form an imonium salt, which regenerated a new cyclic enamine and allowed a subsequent internal enamine acylation reaction (309,310). The required cyclic enamine could not be obtained in this instance by base isomerization of the allylic amine precursor, but was obtained by mercuric acetate oxidation of its reduction product. Condensation of a dihydronaphthalene carboxylic ester with an enamine has also been reported (311). [Pg.362]

How mighl you use a conjugate addition reaction to prepare 2-methyl-3-propyl-cyclopentanone ... [Pg.729]

An important stage in the synthesis has been reached. It was anticipated that cleavage of the trimethylsilyl enol ether in 18 using the procedure of Binkley and Heathcock18 would regiospecifically furnish the thermodynamic (more substituted) cyclopentanone enolate, a nucleophilic species that could then be alkylated with iodo-diyne 17. To secure what is to become the trans CD ring junction of the steroid nucleus, the diastereoisomer in which the vinyl and methyl substituents have a cis relationship must be formed. In the... [Pg.162]

Generally, in contrast to 2-substituted cyclopentanones, the diastereoselectivity of addition reactions to 3-substituted cyclopentanones is nearly independent of the nucleophile and the substituent in the 3-position. Thus, addition of various Grignard reagents, including ethynyl reagents, to 3-methyl- and 3-ferf-butylcyclopentanone leads to almost the same ratio of diastereomers (Table 3)3,4 6, 27,2s... [Pg.15]

In a related study the adduct of the lithium enolate of methyl bis(trimethylsilyl)acetale and ( —)-(/J)-2-(4-methylphenylsulfinyl)-2-cyclopentanone was transformed to ( — )-methyl jasmonate in > 99% ee. In contrast to the previous study described in this section, addition of the enolate proceeded apparently through a chelated form of the enone15. [Pg.1046]

Acetone, 2-butanone, 3-methyl-2-butanone, 2-pentanone, 3,3-dimethyl-2-butanone, cyclopentanone, 3-heptanone. 4-methyl-cyclohexanone, 2-octanone, and acetophenone 2 m Porapak Q column, 100-200° at 107min. [Pg.279]

Cyclohexanone, 23,35 Cyclohexene oxide, 137 Cyclohcxyl methyl ether, 137 l-Cydohexyl-2-methylpropene, 68-9 ( )-l-Cyclohexyl-2-trimethyl ilylethene, 12 (Z)-l-Cyclohexyl-2-trimethylsilylelhene, 12 l-Cydohcxyl-2-trimethylsilylethyne, 12 (2-Cyclohexylidene-eihyl)trimethylsilane, 29 Cyclopentadec-2-ynone, 48 Cydopentadiene, 25 Cyclopentanone, 72 Cyclopentenones, 15 Cyclopropanone, 133... [Pg.83]

Esterification of the propionic acid side chain at C-13 (ring C) with a methyl group catalyzed by S-adenosyl-L-methionine-magnesium protoporphyrin 0-meth-yltransferase yields protoporphyrin IX monomethyl ester (MPE), which originates protochlorophyllide by a P-oxidation and cyclization of the methylated propionic side chain. This molecule contains a fifth isocyclic ring (ring E), the cyclopentanone ring that characterizes aU chlorophylls. [Pg.35]

Commercial food grade water-soluble Cu-chlorophyllin is the most notable among these preparations. Copper chlorophyllins are produced from crude natural chlorophyll extracts followed by the hydrolysis of the phytyl and methyl esters, cleavage of the cyclopentanone (E) ring in dilute alkali, and the replacement of magnesium by copper. ... [Pg.206]


See other pages where Cyclopentanone, 3-methyl is mentioned: [Pg.194]    [Pg.138]    [Pg.270]    [Pg.1564]    [Pg.1314]    [Pg.1182]    [Pg.91]    [Pg.248]    [Pg.866]    [Pg.1098]    [Pg.1098]    [Pg.382]    [Pg.173]    [Pg.248]    [Pg.270]    [Pg.1564]    [Pg.3]    [Pg.857]    [Pg.231]    [Pg.232]    [Pg.25]    [Pg.82]    [Pg.320]    [Pg.438]    [Pg.87]    [Pg.122]    [Pg.154]    [Pg.103]    [Pg.37]    [Pg.844]    [Pg.142]    [Pg.926]    [Pg.1043]    [Pg.1044]    [Pg.202]    [Pg.1192]    [Pg.441]   
See also in sourсe #XX -- [ Pg.18 ]




SEARCH



2-methyl cyclopentanone, photolysis

Cyclopentanon

Cyclopentanone

Cyclopentanone 2-methyl-: enolization

Cyclopentanones

© 2024 chempedia.info