Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclohexanone pyrrolidine enamine

Enamines as nucleophiles react with butadiene, and a-octadienyl ketones or aldehydes are obtained after hydrolysis[57]. This is a good way of introducing an octadienyl group at the o-position of ketones or aldehydes, because butadiene does not react with ketones or aldehydes directly. The reaction of the pyrrolidine enamine of cyclohexanone gives, after hydrolysis, 2-(2,7-octadie-nyOcyclohe.xanone (58) as the main product, accompanied by a small amount of 2,6-di(2,7-octadienyl)cyclohexanone. The reaction of the optically active enamine 59 with butadiene gave 2-(2,7-octadienyl)cyclohexanone (60) in 72% ce[58]. [Pg.432]

In 1954 Stork et al. (i) reported that the alkylation of the pyrrolidine enamine of cyclohexanone (5) with methyl iodide followed by acid hydro-I ysis led to the monoalkylated ketone. It was thus obvious that the enamine (7) derived by the loss of proton from the intermediate methylated iminium cation (6) failed to undergo any further alkylation. [Pg.2]

Johnson and Whitehead have further shown that the reductive elimination of the pyrrolidine group from the pyrrolidine enamine of 2,4-dimethyl-cyclohexanone (16), which involved treating it with a mixture of lithium aluminum hydride and aluminum chloride (9), gave the trans isomer of 3,5-dimethyl-/l -cyclohexene (17) which on subsequent hydrogenation on a platinum catalyst led to the // onr-3,5-dimethylcyclohexane (18). [Pg.4]

Reaction of the pyrrolidine enamine of cyclohexanone with phenyl vinyl sulfone afforded a 9 1 mixture of the tri- and tetrasubstituted isomers (2(5). The preference of the less substituted isomer in this case is in keeping with the greater overlap requirement between the n electrons of the double bond and the electron pair on the nitrogen atom, since the double bond exo to the five-membered ring is much more favored than the double bond exo to the six-membered ring. It is, however, hard to explain the formation of largely the trisubstituted isomer with the piperidine enamine of cyclohexanone, where both of the rings involved are six-membered. [Pg.16]

It was, however, found 22) that when the pyrrolidine enamine of cyclohexanone was allowed to react with an excess of -nitrostyrene, a bis adduct (46), made up of one molecule of the enamine and two molecules of olefin, was obtained in addition to the monoadduct. That the bis adduct is not derived from the monoadduct was shown by the latter s failure to react with (9-nitrostyrene. Therefore, this adduct must be formed by the addition of the olefin to the dipolar intermediate (47), as shown in the following scheme. [Pg.18]

In their original communication on the alkylation and acylation of enamines, Stork et al. (3) had reported that the pyrrolidine enamine of cyclohexanone underwent monoacylation with acid chlorides. For example, the acylation with benzoyl chloride led to monobenzoylcyclohexanone. However, Hunig and Lendle (33) found that treatment of the morpholine enamine of cyclopentanone with 2 moles of propionyl chloride followed by acid hydrolysis gave the enol ester (56), which was proposed to have arisen from the intermediate (55). [Pg.20]

Stork and Borowitz (36) have reported that the reaction of the pyrrolidine enamine of cyclohexanone with aromatic sulfonyl chloride led to the tetrasubstituted isomer of the sulfonated enamine (63). [Pg.22]

Malhotra et al. (5pyrrolidine enamine of 3-methyl-cyclohexanone, prepared under equilibrating conditions, is a 3 7 mixture of A and A isomers (67 and 68) on the basis of NMR spectral data. The preponderance of the A isomer in the mixture was attributed to strain between the equatorial methyl group and the vinylic hydrogen atom... [Pg.23]

With enamines of cyclic ketones direct C alkylation occurs with allyl and propargyl as well as alkyl halides. The reaction is again sensitive to the polarity of the solvent (29). The pyrrolidine enamine of cyclohexanone on reaction with ethyl iodide in dioxane gave 25% of 2-ethylcyclohexanone on hydrolysis, while in chloroform the yield was increased to 32%. [Pg.121]

Aryl halides with a halogen activated by electron-withdrawing groups react with pyrrolidine enamines of cyclic ketones (68) to give the a-arylated ketones after hydrolysis. The enamine (28) with 2,4-dinitrochlorobenzene gave an excellent yield of 2(2,4-dinitrophenyl)cyclohexanone (88). The... [Pg.133]

The pyrrolidine enamine of cyclohexanone (28) has been shown to react with 0-, m-, and p-nitrobenzenesulfenyl chlorides (105). A mixture of the 2-mono- and 2,6-bis(o-, m-, and p-nitrophenylsulfenyl)cyclohexanones is obtained on hydrolysis. Only the monosubstituted derivative (155) is... [Pg.148]

Acrolein (19), when allowed to react with an enamine such as the pyrrolidine enamine of cyclohexanone at room temperature followed by distillation, gives an interesting bicycioaminoketone (20) in a 75 % yield (27). This... [Pg.216]

The similarity between the reactions of alkenes and cyclopropanes is further demonstrated by the reactions of electrophilic cyclopropanes and cyclopropenes with enamines. Cyclopropylcyanoester74, when treated with the pyrrolidine enamine of cyclohexanone, undergoes what would be a 1,2 cycloaddition in the analogous alkene case, but is actually a 1,3 cycloaddition here, to form adduct 75 (90). A similar reaction between the... [Pg.229]

The reaction of methyl propiolate (82) with acyclic enamines produces acyclic dienamines (100), as was the case with dimethyl acetylenedicarboxylate, and the treatment of the pyrrolidine enamines of cycloheptanone, cyclooctanone, cycloundecanone, and cyclododecanone with methyl propiolate results in ring enlargement products (100,101). When the enamines of cyclohexanone are allowed to react with methyl propiolate, rather anomalous products are formed (100). The pyrrolidine enamine of cyclopentanone forms stable 1,2-cycloaddition adduct 83 with methyl propiolate (82). Adduct 83 rearranges to the simple alkylation product 84 upon standing at room temperature, and heating 83 to about 90° causes ring expansion to 85 (97,100). [Pg.231]

A pseudo 1,2 cycloaddition (actually a 1,3 cycloaddition, but may be considered a 1,2 type if a three-membered ring is considered analogous to an alkene) is observed when the pyrrolidine enamine of cyclohexanone is allowed to react with N-carbethoxyaziridine (129) to produce octahydro-indole 130 91). Octahydroindoles and pyrrolidines can also be produced through the intramolecular alkylation of the enamines of certain halo-ketourethanes 176a). [Pg.242]

Nitrilimines can be produced by treating halogenated hydrazones with a base such as triethylamine. These nitrilimines undergo 1,3 cycloaddition with enamines to form pyrazoles (181-183). This is shown by the reaction of the pyrrolidine enamine of cyclohexanone with diphenyinitrilimine to... [Pg.243]

The illumination of enamines as general activa ting derivatives of ketones in alkylation reactions also threw light on their special usefulness for controlling alkylations (3), particularly in the formation of monosubstituted cyclohexanones. Thus 2-methylcyclohexanone could be obtained in 80% yield from the pyrrolidine enamine of cyclohexanone, and further alkylation, which required more drastic conditions, gave only 2,6-dimethylcyclo-hexanone (1,237). [Pg.346]

The Stork enamine reaction and the intramolecular aldol reaction can be carried out in sequence to allow the synthesis of cyclohexenones. For example, reaction of the pyrrolidine enamine of cyclohexanone with 3-buten-2-one. followed by enamine hydrolysis and base treatment, yields the product indicated. Write each step, and show the mechanism of each. [Pg.912]

The pyrrolidine enamine of cyclohexanone 675 react, with 746 in THF/acetoni-trile to form, via 760, the bicyclic ketoester 761 in, as yet, only ca 30-40% yield... [Pg.128]

The enamines derived from cyclohexanones are of particular interest. The pyrrolidine enamine is most frequently used for synthetic applications. The enamine mixture formed from pyrrolidine and 2-methylcyclohexanone is predominantly isomer 17.106 A steric effect is responsible for this preference. Conjugation between the nitrogen atom and the tt orbitals of the double bond favors coplanarity of the bonds that are darkened in the structures. In isomer 17 the methyl group adopts a quasi-axial conformation to avoid steric interaction with the amine substituents.107 A serious nonbonded repulsion (A1,3 strain) in 18 destabilizes this isomer. [Pg.47]

Treated with ZnBr2 followed by enamines, phenyl thioethers 829 derived from aryl aldehydes are converted to (l-(phenylthio)alkyl ketones or aldehydes 830 in moderate to good yields (Equation 19). Enamines used in these syntheses are (1) morpholine enamine derived from diethyl ketone, (2) diethylamine enamine of propiophenone, (3) piperidine enamine derived from isovaleraldehyde, and (4) pyrrolidine enamine of cyclohexanone <2000H(53)331>. [Pg.93]

Condensation of the pyrrolidine enamine of cyclohexanone with l,l-dicyano-2,2-dimethylcyclopropane proceeds smoothly in refluxing dry xylene and gives the expected adduct in 76% yield. Recrystallisation of the adduct from 95% ethanol, however, gave a 91% yield of a product which no longer contained the pyrrolidine group but whose spectral data clearly showed the presence of a ketone group and an enaminonitrile function. Hydrolysis of this latter product with phosphoric acid/acetic acid gave 5-(2-oxo-4,4-dimethylcyclopentyl)pentanoic acid in 83% yield. [Pg.104]

We met enamines as specific enol equivalents in the last chapter and they are particularly good at conjugate addition. The pyrrolidine enamine from cyclohexanone 41 adds to acrylic esters 42 in conjugate fashion and the first-formed product 43 gives the enamine 44 by proton exchange.4 Acid hydrolysis via the imine salt 45 gives the 1,5-dicarbonyl compound 46. [Pg.154]

C-Alkylation affords monoalkylated products as a result of the lower reactivity of the monoalkylated enamines. Enamine salts obtained by alkylation can afford new enamines capable of further alkylation only by the loss of a proton. In some cases, dialkylation can be achieved by the addition of the more basic ethyldicyclohexylamine. Monoalkylation of the pyrrolidine enamine of cyclohexanone is due to a considerable energy difference between the transition states caused... [Pg.187]

Enamines of aldehydes react with alkyl vinyl ketones.212 Substituted cyclohexanones may be obtained after hydrolysis. Application of this reaction to a,j8-unsaturated aldehydes leads to substituted glutardialdehydes.269 The ratio of the products from the addition of methyl vinyl ketone to the pyrrolidine enamine derived from jS-decalone depends on the configuration of the decalone.76... [Pg.203]

Ozonolysis of vinylpyrazine in methanol at — 30° furnishes pyrazine aldehyde in 73% yield.196 Vinylpyrazine undergoes a variety of addition reactions and pyrazylethyl derivatives of amines, ketones, ethyl phenyl acetate, phenylacetonitrile, and acetamide have been obtained.197-199 2-(2-Pyrazylethyl)cyclohexanone (42) has been prepared both by the condensation of vinylpyrazine with cyclohexanone in the presence of sodium metal and by interaction of vinylpyrazine with the pyrrolidine enamine of cyclohexanone followed by hydrolysis.200... [Pg.136]

Enamines are intermediate in reactivity more reactive than an enol, but less reactive than an enolate ion. Enamine reactions occur under milder conditions than enolate reactions, so they avoid many side reactions. Enamines displace halides from reactive alkyl halides, giving alkylated iminium salts. The iminium ions are unreactive toward further alkylation or acylation. The following example shows benzyl bromide reacting with the pyrrolidine enamine of cyclohexanone. [Pg.1053]

The pyrrolidine enamine of cyclohexanone (IX/1) treated with acrylaldehyde yields the bicyclic compound, IX/2, in 72 % yield in which the pyrrolidine ring has moved. On heating with aqueous base, the methiodide IX/3 was transformed to 4-cyclooctene-carboxylic acid (IX/4) [1], In a similar reaction, but without reorganisation of the substituents, 2-nitrocyclohexanone (IX/5) was... [Pg.199]

Similarly, the enamine of a 2-substituted cyclohexanone is alkylated by electrophilic alkenes such as acrylonitrile or methyl acrylate at the exposition in methanol or acetonitrile. However, prolonged reaction time (66 h) of the pyrrolidine enamine of 2-methylcyclohexanone with these reagents in dioxane or benzene under reflux gives a 1 1 mixture of 2,2- and 2,6-disubstituted cyclohexanones (38 and 39)82>83 (Scheme 23). [Pg.746]


See other pages where Cyclohexanone pyrrolidine enamine is mentioned: [Pg.159]    [Pg.860]    [Pg.860]    [Pg.814]    [Pg.159]    [Pg.860]    [Pg.860]    [Pg.814]    [Pg.32]    [Pg.44]    [Pg.154]    [Pg.230]    [Pg.244]    [Pg.397]    [Pg.118]    [Pg.397]    [Pg.25]    [Pg.1052]    [Pg.135]    [Pg.10]    [Pg.469]    [Pg.746]   
See also in sourсe #XX -- [ Pg.84 , Pg.85 ]

See also in sourсe #XX -- [ Pg.555 , Pg.973 ]




SEARCH



Cyclohexanone enamine

Cyclohexanone pyrrolidine

Cyclohexanones enamines

Pyrrolidine enamine

Pyrrolidines enamines

© 2024 chempedia.info