Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclodextrins chiral separations

Fig. 3. The chiral separation obtained for oxa2epam on a sulfated cyclodextrin hplc column (4.6 mm ID x 25 cm) using a 10% acetonitrile/buffer (25 mM... Fig. 3. The chiral separation obtained for oxa2epam on a sulfated cyclodextrin hplc column (4.6 mm ID x 25 cm) using a 10% acetonitrile/buffer (25 mM...
Gyclodextrins. As indicated previously, the native cyclodextrins, which are thermally stable, have been used extensively in Hquid chromatographic chiral separations, but their utihty in gc appHcations was hampered because their highly crystallinity and insolubiUty in most organic solvents made them difficult to formulate into a gc stationary phase. However, some functionali2ed cyclodextrins form viscous oils suitable for gc stationary-phase coatings and have been used either neat or diluted in a polysiloxane polymer as chiral stationary phases for gc (119). Some of the derivati2ed cyclodextrins which have been adapted to gc phases are 3-0-acetyl-2,6-di-0-pentyl, 3-0-butyryl-2,6-di-0-pentyl,... [Pg.70]

T. J. Ward, D. W. Armstrong, Cyclodextrin-stationary phases in Chromatographic chiral separations, M. Zief, L. J. Crane (Eds.), Chromatographic Science Series, Vol. 40, Marcel Dekker, New York (1988) Chapter 5. [Pg.20]

A. M. Stalcup, Cyclodextrin bonded chiral stationary phases in enantiomer separations in A practical approach to chiral separations by liquid chromatogra.phy, G. Subramanian, VCH, Weinheim (1994) Chapter 5. [Pg.20]

Electrophoretic ally Driven Preparative Chiral Separations using Cyclodextrins... [Pg.286]

Righetti and co-workers [11] were one of the first to demonstrate the utility of classical isoelectric focusing for the chiral separation of small molecules in a slab gel configuration. In their system, dansylated amino acids were resolved enan-tiomerically through complexation with (i-cyclodextrin. Preferential complexation between the cyclodextrin and the derivatized amino acid induced as much as a 0.1 pH unit difference in the pK s of the dansyl group. [Pg.290]

Rizzi, A. M. and Plank, C., Coupled column chromatography in chiral separations systems employing P-cyclodextrin phases for chiral separation, /. Chromatogr., 557, 199, 1991. [Pg.51]

Capillary electrophoresis employing chiral selectors has been shown to be a useful analytical method to separate enantiomers. Conventionally, instrumental chiral separations have been achieved by gas chromatography and by high performance liquid chromatography.127 In recent years, there has been considerable activity in the separation and characterization of racemic pharmaceuticals by high performance capillary electrophoresis, with particular interest paid to using this technique in modem pharmaceutical analytical laboratories.128 130 The most frequently used chiral selectors in CE are cyclodextrins, crown ethers, chiral surfactants, bile acids, and protein-filled... [Pg.405]

Kang, J. and Ou, Q., Chiral separation of racemic mexilitine hydrochloride using cyclodextrins as chiral additive by capillary electrophoresis,. Chromatogr. A, 795, 394, 1998. [Pg.439]

Walhagen, A., Edholm, L.E. (1991). Chiral separation of achiral stationary phases with different functionalities using P-cyclodextrin in the mobile phase and applications to bioanalysis and coupled columns. Chromatographia 32, 215-223. [Pg.344]

Lin et al. [95] used capillary electrophoresis with dual cyclodextrin systems for the enantiomer separation of miconazole. A cyclodextrin-modified micellar capillary electrophoretic method was developed using mixture of /i-cyclodextrins and mono-3-0-phenylcarbamoyl-/j-cyclodextrin as chiral additives for the chiral separation of miconazole with the dual cyclodextrins systems. The enantiomers were resolved using a running buffer of 50 mmol/L borate pH 9.5 containing 15 mmol/L jS-cyclodextrin and 15 mmol/L mono-3-<9-phcnylcarbamoyl-/j-cyclodextrin containing 50 mmol/L sodium dodecyl sulfate and 1 mol/L urea. A study of the respective influence of the /i-cyclodcxtrin and the mono-3-(9-phenylcarbamoyl-/i-cyclodextrin concentration was performed to determine the optical conditions with respect to the resolution. Good repeatability of the method was obtained. [Pg.55]

As yet, the number of applications is limited but is likely to grow as instrumentation, mostly based on existing CE systems, and columns are improved and the theory of CEC develops. Current examples include mixtures of polyaromatic hydrocarbons, peptides, proteins, DNA fragments, pharmaceuticals and dyes. Chiral separations are possible using chiral stationary phases or by the addition of cyclodextrins to the buffer (p. 179). In theory, the very high efficiencies attainable in CEC mean high peak capacities and therefore the possibility of separating complex mixtures of hundreds of... [Pg.648]

Anions and uncharged analytes tend to spend more time in the buffered solution and as a result their movement relates to this. While these are useful generalizations, various factors contribute to the migration order of the analytes. These include the anionic or cationic nature of the surfactant, the influence of electroendosmosis, the properties of the buffer, the contributions of electrostatic versus hydrophobic interactions and the electrophoretic mobility of the native analyte. In addition, organic modifiers, e.g. methanol, acetonitrile and tetrahydrofuran are used to enhance separations and these increase the affinity of the more hydrophobic analytes for the liquid rather than the micellar phase. The effect of chirality of the analyte on its interaction with the micelles is utilized to separate enantiomers that either are already present in a sample or have been chemically produced. Such pre-capillary derivatization has been used to produce chiral amino acids for capillary electrophoresis. An alternative approach to chiral separations is the incorporation of additives such as cyclodextrins in the buffer solution. [Pg.146]


See other pages where Cyclodextrins chiral separations is mentioned: [Pg.175]    [Pg.359]    [Pg.175]    [Pg.359]    [Pg.270]    [Pg.61]    [Pg.65]    [Pg.65]    [Pg.72]    [Pg.59]    [Pg.169]    [Pg.294]    [Pg.297]    [Pg.296]    [Pg.5]    [Pg.406]    [Pg.406]    [Pg.407]    [Pg.408]    [Pg.433]    [Pg.73]    [Pg.181]    [Pg.304]    [Pg.307]    [Pg.335]    [Pg.53]    [Pg.55]    [Pg.181]   


SEARCH



Chiral separations

Chiral separations chirality

Chiralic separation

Cyclodextrin separation

© 2024 chempedia.info