Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclodextrin analysis

B. Herbreteau, A. Salvador, M. Lafosse and M. Dreux, SFC with evaporative lightscattering detection and atmospheric-pressure chemical-ionisation mass spectrometry for methylated glucoses and cyclodextrins analysis, Analusis 27 706-712 (1999). [Pg.170]

ANALYSIS OF MEDICINES BY TEC IN MOBILE PHASES CONTAINING SURFACTANTS AND CYCLODEXTRINES... [Pg.384]

Figure 3.7 shows some early examples of this type of analysis (39), illustrating the GC determination of the stereoisomeric composition of lactones in (a) a fruit drink (where the ratio is racemic, and the lactone is added artificially) and (b) a yoghurt, where the non-racemic ratio indicates no adulteration. Technically, this separation was enabled on a short 10 m slightly polar primary column coupled to a chiral selective cyclodextrin secondary column. Both columns were independently temperature controlled and the transfer cut performed by using a Deans switch, with a backflush of the primary column following the heart-cut. [Pg.65]

It is in the study of this phenomenon where two-dimensional GC offers by far the most superior method of analysis. The use of chiral selector stationary phases, in particular modified cyclodextrin types, allows apolar primary and atropisomer selective secondary separation. Reported two-dimensional methods have been successful... [Pg.69]

GC using chiral columns coated with derivatized cyclodextrin is the analytical technique most frequently employed for the determination of the enantiomeric ratio of volatile compounds. Food products, as well as flavours and fragrances, are usually very complex matrices, so direct GC analysis of the enantiomeric ratio of certain components is usually difficult. Often, the components of interest are present in trace amounts and problems of peak overlap may occur. The literature reports many examples of the use of multidimensional gas chromatography with a combination of a non-chiral pre-column and a chiral analytical column for this type of analysis. [Pg.218]

Figure 10.1 Analysis of racemic 2,5-dimethyl-4-hydroxy-3[2H]-furanone (1) obtained from a strawbeny tea, flavoured with the synthetic racemate of 1 (natural component), using an MDGC procedure (a) dichloromethane extract of the flavoured strawbeny tea, analysed on a Carbowax 20M pre-column (60 m, 0.32 mm i.d., 0.25 p.m film thickness earner gas H2, 1.95 bar 170 °C isothermal) (b) chirospecific analysis of (1) from the sti awbeny tea exti act, ti ansfened foi stereoanalysis by using a pemiethylated /3-cyclodextrin column (47 m X 0.23 mm i.d. canier gas H2, 1.70 bar 110 °C isothemial). Reprinted from Journal of High Resolution Chromatography, 13, A. Mosandl et al., Stereoisomeric flavor compounds. XLIV enantioselective analysis of some important flavor molecules , pp. 660-662, 1990, with permission from Wiley-VCH. Figure 10.1 Analysis of racemic 2,5-dimethyl-4-hydroxy-3[2H]-furanone (1) obtained from a strawbeny tea, flavoured with the synthetic racemate of 1 (natural component), using an MDGC procedure (a) dichloromethane extract of the flavoured strawbeny tea, analysed on a Carbowax 20M pre-column (60 m, 0.32 mm i.d., 0.25 p.m film thickness earner gas H2, 1.95 bar 170 °C isothermal) (b) chirospecific analysis of (1) from the sti awbeny tea exti act, ti ansfened foi stereoanalysis by using a pemiethylated /3-cyclodextrin column (47 m X 0.23 mm i.d. canier gas H2, 1.70 bar 110 °C isothemial). Reprinted from Journal of High Resolution Chromatography, 13, A. Mosandl et al., Stereoisomeric flavor compounds. XLIV enantioselective analysis of some important flavor molecules , pp. 660-662, 1990, with permission from Wiley-VCH.
Figure 10.2 MDGC-MS differentiation between the enantiomers of theaspiranes in an aglycone fraction from puiple passion fruit DB5 pre-column (25 m X 0.25 mm i.d., 0.25 p.m film thickness canier gas He, 0.66 ml/min oven temperature, 60-300 °C at 10 °C/min with a final hold of 25 min) permethylated /3-cyclodextrin column (25 m X 0.25 mm i.d., 0.25 p.m film thickness canier gas He, 1.96 ml/min 80 °C isothermal for 20 min and then programmed to 220 °C at 2 °C/min). Reprinted from Journal of High Resolution Chromatography, 16, G. Full et al., MDGC- MS a powerful tool for enantioselective flavor analysis , pp. 642-644, 1993, with permission from Wiley-VCH. Figure 10.2 MDGC-MS differentiation between the enantiomers of theaspiranes in an aglycone fraction from puiple passion fruit DB5 pre-column (25 m X 0.25 mm i.d., 0.25 p.m film thickness canier gas He, 0.66 ml/min oven temperature, 60-300 °C at 10 °C/min with a final hold of 25 min) permethylated /3-cyclodextrin column (25 m X 0.25 mm i.d., 0.25 p.m film thickness canier gas He, 1.96 ml/min 80 °C isothermal for 20 min and then programmed to 220 °C at 2 °C/min). Reprinted from Journal of High Resolution Chromatography, 16, G. Full et al., MDGC- MS a powerful tool for enantioselective flavor analysis , pp. 642-644, 1993, with permission from Wiley-VCH.
Recently, multidimensional GC has been employed in enantioselective analysis by placing a chiral stationary phase such as a cyclodextrin in the second column. Typically, switching valves are used to heart-cut the appropriate portion of the separation from a non-chiral column into a chiral column. Heil et al. used a dual column system consisting of a non-chiral pre-column (30 m X 0.25 mm X 0.38 p.m, PS-268) and a chiral (30 m X 0.32 mm X 0.64 p.m, heptakis(2,3-di-(9-methyl-6-(9-tert-butyldimethylsilyl)-(3-cyclodextrin) (TBDM-CD) analytical column to separate derivatized urinary organic acids that are indicative of metabolic diseases such as short bowel syndrome, phenylketonuria, tyrosinaemia, and others. They used a FID following the pre-column and an ion trap mass-selective detector following the... [Pg.415]

Quantitative Structure-Reactivity Analysis of the Inclusion Mechanism by Cyclodextrins... [Pg.61]

The applications of quantitative structure-reactivity analysis to cyclodextrin com-plexation and cyclodextrin catalysis, mostly from our laboratories, as well as the experimental and theoretical backgrounds of these approaches, are reviewed. These approaches enable us to separate several intermolecular interactions, acting simultaneously, from one another in terms of physicochemical parameters, to evaluate the extent to which each interaction contributes, and to predict thermodynamic stabilities and/or kinetic rate constants experimentally undetermined. Conclusions obtained are mostly consistent with those deduced from experimental measurements. [Pg.62]

It is known that several intermolecular interactions are responsible for cyclodextrin complexation, acting simultaneously. These interactions are separable from one another by quantitative structure-reactivity analysis. Furthermore, correlations obtained by the analysis can be discussed in direct connection with actual interactions already elucidated experimentally for the action site of cyclodextrin. Thus, the results must serve to make the background of the correlation analysis more concrete. [Pg.63]

The present review is concerned with the applications of the quantitative structure-reactivity analysis to cyclodextrin complexation and cyclodextrin catalysis, mostly from our laboratories, as well as the experimental and theoretical backgrounds of these approaches. [Pg.63]

Matsui75) has computed energies (Emin) which correspond to the minimal values of Evdw in Eq. 1 for cyclodextrin-alcohol systems (Table 2). Besides normal and branched alkanols, some diols, cellosolves, and haloalkanols were involved in the calculations. The Emi values obtained were adopted as a parameter representing the London dispersion force in place of Es. Regression analysis gave Eqs. 9 and 10 for a- and P-cyclodextrin systems respectively. [Pg.71]

Regression analysis of the results gave Eqs. 11 and 12 fora- and P-cyclodextrin systems respectively. [Pg.72]

Matsui et al.82) have analyzed the same data of log l/Kd(X) for cyclodextrin-phenol systems from a somewhat different standpoint. They computed the minimal van der Waals interaction energies (Emin) for the systems by using the same method as described in a previous section (Table 4). The calculated Emin values were applied, in place of such steric parameters as Ibrnch and B1( to the correlation analysis. The correlations obtained are given in Eqs. 24 to 27. [Pg.76]

Quantitative structure-reactivity analysis is one of the most powerful tools for elucidating the mechanisms of organic reactions. In the earliest study, Van Etten et al. 71) analyzed the pseudo-first-order rate constants for the alkaline hydrolysis of a variety of substituted phenyl acetates in the absence and in the presence of cyclodextrin. The... [Pg.82]

In these equations, Dmax is the larger of the summed values of STERIMOL parameters, Bj, for the opposite pair 68). It expresses the maximum total width of substituents. The coefficients of the ct° terms in Eqs. 37 to 39 were virtually equal to that in Eq. 40. This means that the a° terms essentially represent the hydrolytic reactivity of an ester itself and are virtually independent of cyclodextrin catalysis. The catalytic effect of cyclodextrin is only involved in the Dmax term. Interestingly, the coefficient of Draax was negative in Eq. 37 and positive in Eq. 38. This fact indicates that bulky substituents at the meta position are favorable, while those at the para position unfavorable, for the rate acceleration in the (S-cyclodextrin catalysis. Similar results have been obtained for a-cyclodextrin catalysis, but not for (S-cyclodextrin catalysis, by Silipo and Hansch described above. Equation 39 suggests the existence of an optimum diameter for the proper fit of m-substituents in the cavity of a-cyclodextrin. The optimum Dmax value was estimated from Eq. 39 as 4.4 A, which is approximately equivalent to the diameter of the a-cyclodextrin cavity. The situation is shown in Fig. 8. A similar parabolic relationship would be obtained for (5-cyclodextrin catalysis, too, if the correlation analysis involved phenyl acetates with such bulky substituents that they cannot be included within the (5-cyclodextrin cavity. [Pg.85]

A few examples have been reported in which no steric parameter is involved in the correlation analysis of cyclodextrin catalysis. Straub and Bender 108) showed that the maximal catalytic rate constant, k2, for the (5-cyclodextrin-catalyzed decarboxylation of substituted phenylcyanoacetic acid anions (J) is correlated simply by the Hammett a parameter. [Pg.85]

As shown above, quantitative structure-reactivity analysis is very useful in elucidating the mechanisms of cyclodextrin complexation and cyclodextrin catalysis. This method enables us to separate several intermolecular interactions, acting simultaneously,... [Pg.86]


See other pages where Cyclodextrin analysis is mentioned: [Pg.294]    [Pg.294]    [Pg.242]    [Pg.244]    [Pg.26]    [Pg.384]    [Pg.218]    [Pg.229]    [Pg.290]    [Pg.68]    [Pg.74]    [Pg.76]    [Pg.82]    [Pg.83]    [Pg.87]   
See also in sourсe #XX -- [ Pg.83 , Pg.91 , Pg.94 ]




SEARCH



Cyclodextrin qualitative analysis

Preparation and Analysis of Cyclodextrin

Preparation and Analysis of Cyclodextrin Derivatives

© 2024 chempedia.info