Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cycloadditions pyrans

H-pyran synthesis from, 3, 759 bis(trimethylsiloxy) in pyrrole synthesis, 4, 333 chromene synthesis from, 3, 750 cycloaddition reactions with isocyanates, azetidin-2-ones from, 7, 261 dihydropyran synthesis from, 3, 771 fuiyl... [Pg.514]

Similar cycloaddition reactions were observed with methyl vinyl sulfone (48) and )3-nitrostyrene (48,51). Methyl vinyl ketone, on the other hand, is reported to give dihydropyrans as the initial products (50,52,53). Thus (16) on reaction with methyl vinyl ketone at room temperature for 12 hr gave a 60% yield of 2-dimethylamino-3,3,6-trimethyl-3,4-dihydro-2H-pyran (59). [Pg.126]

A simple approach for the formation of 2-substituted 3,4-dihydro-2H-pyrans, which are useful precursors for natural products such as optically active carbohydrates, is the catalytic enantioselective cycloaddition reaction of a,/ -unsaturated carbonyl compounds with electron-rich alkenes. This is an inverse electron-demand cycloaddition reaction which is controlled by a dominant interaction between the LUMO of the 1-oxa-1,3-butadiene and the HOMO of the alkene (Scheme 4.2, right). This is usually a concerted non-synchronous reaction with retention of the configuration of the die-nophile and results in normally high regioselectivity, which in the presence of Lewis acids is improved and, furthermore, also increases the reaction rate. [Pg.178]

More recently, further developments have shown that the reaction outlined in Scheme 4.33 can also proceed for other alkenes, such as silyl-enol ethers of acetophenone [48 b], which gives the endo diastereomer in up to 99% ee. It was also shown that / -ethyl-/ -methyl-substituted acyl phosphonate also can undergo a dia-stereo- and enantioselective cycloaddition reaction with ethyl vinyl ether catalyzed by the chiral Ph-BOX-copper(ll) catalyst. The preparative use of the cycloaddition reaction was demonstrated by performing reactions on the gram scale and showing that no special measures are required for the reaction and that the dihydro-pyrans can be obtained in high yield and with very high diastereo- and enantioselective excess. [Pg.179]

Attempts to effect cycloaddition of 1/7-azepines with 2//-pyran-2-one have failed however, the more electron-deficient inethyl 2-oxo-2/7-pyran-5-carboxylate undergoes slow addition with ethyl 1//-azepine-1-carboxylate to give a mixture of the [2 + 4] 32 and [6 + 4] 33 7t-cycload-ducts.260 In contrast, prolonged reaction of methyl 1 //-azepine-1 -carboxylate with the isomeric... [Pg.192]

The bicyclic system 5 can also be used to prepare annulated systems by cycloaddition-cycloreversion processes. With 2//-pyran-2-one (6) a mixture of cycloadducts is formed on... [Pg.571]

The preparation of 5-ACETYL-l,2,3,4,5-PENTAMETHYLCYCLO-PENTADIENE is of value in the synthesis of pentamethyleyclo-pentadiene and many pentamethylcyclopentadienyl metal carbonyl derivatives that are more soluble in organic solvents than those derived from cyclopentadiene. Simple preparations of 5,6-DIHYDRO-2-PYRAN-2-0NE and 2-//-PYRAN-2-ONE make these hitherto rather inaccessible intermediates available for cycloaddition and other reactions. The already broad scope of the Michael reaction has been widened further by including an efficient preparation of ETHYL (E)-3-NITROACRYLATE. Workers in the field of heterocyclic chemistry will find a simplified method for the preparation of 2,3,4,5-TETRA-HYDROPYRIDINE of help. [Pg.154]

The formation of the tricarbonylchromium-complexed fulvene 81 from the 3-dimethylamino-3-(2 -trimethylsilyloxy-2 -propyl)propenylidene complex 80 and 1-pentyne also constitutes a formal [3+2] cycloaddition, although the mechanism is still obscure (Scheme 17) [76]. The rf-complex 81 must arise after an initial alkyne insertion, followed by cyclization, 1,2-shift of the dimethylamino group, and subsequent elimination of the trimethylsilyloxy moiety. Particularly conspicuous here are the alkyne insertion with opposite regioselectivity as compared to that in the Dotz reaction, and the migration of the dimethylamino functionality, which must occur by an intra- or intermo-lecular process. The mode of formation of the cyclopenta[Z ]pyran by-product 82 will be discussed in the next section. [Pg.35]

Inverse electron-demand Diels-Alder reaction of (E)-2-oxo-l-phenylsulfo-nyl-3-alkenes 81 with enolethers, catalyzed by a chiral titanium-based catalyst, afforded substituted dihydro pyranes (Equation 3.27) in excellent yields and with moderate to high levels of enantioselection [81]. The enantioselectivity is dependent on the bulkiness of the Ri group of the dienophile, and the best result was obtained when Ri was an isopropyl group. Better reaction yields and enantioselectivity [82, 83] were attained in the synthesis of substituted chiral pyranes by cycloaddition of heterodienes 82 with cyclic and acyclic enolethers, catalyzed by C2-symmetric chiral Cu(II) complexes 83 (Scheme 3.16). [Pg.124]

More functionalized 5,6-dihydro-2H-pyran-derivatives 71 and 72 have been prepared [26] by cycloaddition of 1 -methoxy-3-trialkylsilyloxy-1,3-butadienes 69 with t-butylglyoxylate (70) (Scheme 5.6). Whereas thermal reactions did not occur in good yields because of the decomposition of the cycloadducts, application of pressure (10 kbar) allowed milder conditions to be used, which markedly improved the reaction yields. The use of high pressure also gives preferentially en Jo-adduct allowing a stereocontrolled synthesis of a variety of substituted 5,6-dihydro-2H-pyran-derivatives, which are difficult to prepare by other procedures. [Pg.215]

Synthesis of highly functionalized 3,4-dihydro-2H-pyrans by high-pressure Lewis-acid-catalyzed cycloaddition of enol ethers and a,/i-unsaturated aldehydes [83]... [Pg.242]

Dihydro-2H-pyran-2-ones (e. g., 4-195) are valuable intermediates in the synthesis of several natural products [67]. Hattori, Miyano and coworkers [68] have recently shown that these compounds can be easily obtained in high yield by a Pd2+-catalyzed [2+2] cycloaddition of ct, 3-unsaturated aldehydes 4-192 with ketene 4-193, followed by an allylic rearrangement of the intermediate 4-194 (Scheme 4.42). In this reaction the Pd2+-compound acts as a mild Lewis acid. a,(3-unsaturated ketones can also be used, but the yields are below 20%. [Pg.307]

The [4 + 2] cycloaddition of enones and electron-rich olefins is a well-known method for the synthesis of pyrane derivatives [45]. Methylenecyclo-alkanediones [46] have also been used extensively for this purpose. [Pg.37]

Increasing use is being made of pyran syntheses based upon [4 + 2] cycloadditions of carbonyl compounds. The appropriate unsaturated aldehyde with ethyl vinyl ether yields 53 with peracids this affords an epoxide that undergoes ring contraction to the aldehyde 54 (Scheme 23) and rhodium catalyzed decarbonylation affords the required 3-alkylfuran with the optical center intact.116 Acetoxybutadiene derivatives add active carbonyl compounds giving pyrans that contract under the influence of acids to give... [Pg.189]

A pyran ring is formed in the intramolecular Diels-Alder cycloaddition of alkene-tethered enantiopure (lS,2R)-l,2-dihydroxycyclohexa-3,5-diene-l-carboxylic acid derivatives (derived from the biodihydroxylation of benzoic acid). For the three cases illustrated in Scheme 6.246, Mihovilovic and colleagues found that moderate to high yields of the desired cycloadducts could be obtained by exposing a solution of the precursor to microwave irradiation at 135-210 °C for extended periods of time... [Pg.261]

Examples of the use of heterodienophiles under the action of microwave irradiation are not common. Soufiaoui [84] and Garrigues [37] used carbonyl compounds as die-nophiles. The first example employed solvent-free conditions the second is an example of the use of graphite as a susceptor. Cycloaddition of a carbonyl compound provided a 5,6-dihydro-2H-pyran derivative. These types of reaction proceed poorly with aliphatic and aromatic aldehydes and ketones unless highly reactive dienes and/or Lewis acid catalysts are used. Reaction of 2,3-dimethyl-l,3-butadiene (31) with ethyl glyoxylate (112) occurred in 75% yield in 20 min under the action of microwave irradiation. When conventional heating is used it is necessary to heat the mixture at 150 °C for 4 h in a sealed tube to obtain a satisfactory yield (Scheme 9.33). [Pg.315]

The same authors extended the [2 + 2 + 2]-cycloaddition methodology to the use of highly electron-deficient tricarbonyl compounds such as ketomalonates (Equation (33)).360 In that particular case, the reaction does not stop at the initial stage of 277-pyrans 164. Instead, a thermally induced electrocyclic ring opening occurred to form the corresponding cyclopentenes 165 as final product. [Pg.442]

Saalfrank, Hoffmann and co-workers performed a number of reactions with tetra-alkoxyallenes such as 196 (Scheme 8.47) [1, 41, 105, 114—116] and demonstrated that this class of donor-substituted allenes can serve as a 1,3-dianion equivalent of malonic acid. Treatment of 196 with cyclopropyldicarboxylic acid dichloride 197 produces 2,4-dioxo-3,4-dihydro-2H-pyran 198 through release of two molecules of ethyl chloride [115]. Similarily, the reaction of this allene 196 with oxalyl chloride gives 3-chloromalonic acid anhydride derivative 199. This intermediate is a reactive dieno-phile which accepts 2,3-dimethyl-l,3-butadiene in a subsequent [4+2] cycloaddition to afford cycloadduct 200 in good yield [116]. [Pg.458]

Cycloaddition reactions of electron-rich allenes with some heterodienes take place at the C1-C2 bond of the allene to yield heterocycles, a,Unsaturated carbonyl compounds 185 react with the internal C=C bond of ethoxyallene to afford dihydro-pyrans in moderate yields [150]. [Pg.787]

An Improved Preparation of 3-Bromo-2(H)-pyran-2-one An Ambiphilic Diene for Diels-Alder Cycloadditions. [Pg.138]

R)-[(2/ ,65)-6-Ethoxy-5,6-dihydro-2/7-pyran-2-yl]phenylmethanol [Representative Example of a Tandem Catalytic Enantioselective [4-F2] Cycloaddition/AUylboration]... [Pg.5]

A. Bhattacharjee, S. Datta, P. Chattopadhyay, N. Ghoshal, A. P. Kundu, A. Pal, R. Mukhopadhyay, S. Chowdhury, A. Bhattacharjya, and A. Patra, Synthesis of chiral oxepanes and pyrans by 3-O-allyl-carbohydrate nitrone cycloaddition (3-OACNC), Tetrahedron, 59 (2003) 4623 -639. [Pg.185]

Cycloaddition of a variety of alkynes to the azido function of 3 -azido-2, 3 -dideoxythymidine and 3 -azido-2,3-dideoxyuridine yields products (e.g., 716) with a 1,2,3-triazol-l-yl substituent in the 3 -position (Equation (60)). By contrast to the parent compounds, these triazolyl derivatives have no appreciable activity against human immunodeficiency virus <89JHC1635>. Cycloadditions of 4-azido-6-methyl-2//-pyran-2-one with alkynes leads to triazoles (717) <93JHC317>. [Pg.104]

Reactions of propargylic alcohols with 2-naphthol gave the cycloaddition products such as ll-f-naphtho[2,l-fo]pyrans in excellent yields with complete selectivity... [Pg.234]

The non-aromatic nature of the pyran-2-one ring is evident in its behaviour as the diene component in Diels-Alder cycloadditions. With dimethyl acetylenedicarboxylate (DMAD, dimethyl but-2-ynedicarboxy-late), for example, it gives an adduct that spontaneously eliminates carbon dioxide to yield dimethyl phthalate (dimethyl benzene-1,2-dicarboxylate) (Scheme 4.7)... [Pg.62]

Pyran-2-ones are effective dienes in cycloaddition reactions. [Pg.66]

The l,3,4-oxadiazin-6-one (240) undergoes cycloaddition followed by a remarkable rearrangement to give the triazole A(-imine 241 and an open-chain product (136). Cycloadditions have also been carried out with the following ring systems 1,2-dihydroisoquinoline (242) (137) dihydro-1,3-oxazine (243) (138,139), 2H-, 3-benzothiazine (244) (140,141), and 27/-l-pyran-2-thione (245) (142). [Pg.510]


See other pages where Cycloadditions pyrans is mentioned: [Pg.766]    [Pg.183]    [Pg.225]    [Pg.22]    [Pg.36]    [Pg.216]    [Pg.295]    [Pg.112]    [Pg.181]    [Pg.297]    [Pg.312]    [Pg.368]    [Pg.294]    [Pg.294]    [Pg.311]    [Pg.317]    [Pg.201]    [Pg.106]    [Pg.273]    [Pg.417]    [Pg.56]   
See also in sourсe #XX -- [ Pg.92 ]




SEARCH



5,6-Didehydro-3,4-dihydro-2H-pyran cycloaddition

Pyran-2-ones, cycloaddition/allylic

Pyran-2-ones, cycloaddition/allylic rearrangement

Pyrans, dihydro cycloaddition reactions

Pyrans, dihydro cycloaddition reactions synthesis

© 2024 chempedia.info