Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cycloaddition reactions transition metal catalysts

The cycloaddition between norbornadiene (23 in Scheme 1.12) and maleic anhydride was the first example of a /mmo-Diels-Alder reaction [55]. Other venerable examples are reported in Scheme 1.12 [56]. Under thermal conditions, the reaction is generally poorly diastereoselective and occurs in low yield, and therefore several research groups have studied the utility of transition metal catalysts [57]. Tautens and coworkers [57c] investigated the cycloaddition of norbornadiene and some of its monosubstituted derivatives with electron-deficient dienophiles in the presence of nickel-cyclo-octadiene Ni(COD)2 and PPhs. Some results are illustrated in Tables 1.4 and 1.5. [Pg.18]

Our initial studies focused on the transition metal-catalyzed [4+4] cycloaddition reactions of bis-dienes. These reactions are thermally forbidden, but occur photochemically in some specific, constrained systems. While the transition metal-catalyzed intermole-cular [4+4] cycloaddition of simple dienes is industrially important [7], this process generally does not work well with more complex substituted dienes and had not been explored intramolecularly. In the first studies on the intramolecular metal-catalyzed [4+4] cycloaddition, the reaction was found to proceed with high regio-, stereo-, and facial selectivity. The synthesis of (+)-asteriscanoHde (12) (Scheme 13.4a) [8] is illustrative of the utihty and step economy of this reaction. Recognition of the broader utiHty of adding dienes across rc-systems (not just across other dienes) led to further studies on the use of transition metal catalysts to facilitate otherwise difficult Diels-Alder reactions [9]. For example, the attempted thermal cycloaddition of diene-yne 15 leads only... [Pg.264]

Suga et al. (197) reported the first stereocontrolled 1,3-dipolar cycloaddition reactions of carbonyl ylides with electron-deficient alkenes using a Lewis acid catalyst. Carbonyl ylides are highly reactive 1,3-dipoles and cannot be isolated. They are mainly generated through transition metal carbenoid intermediates derived in situ from diazo precursors by treatment with a transition metal catalyst. When methyl o-(diazoacetyl)benzoate is treated with A-methylmaleimide at reflux... [Pg.804]

As discussed in Section 6.9 1, 3-dienes and dienophiles in which multiple bonds are not activated by electron-withdrawing or electron-releasing substituents fail to undergo cycloaddition except under the most severe conditions. Particular difficulty is encountered in the cycloaddition of two unactivated species since homodimerization can be a competitive and dominant reaction pathway. The use of transition-metal catalysts, however, has proved to be a valuable solution. Complexation of unactivated substrates to such catalysts promotes both inter- and intramolecular cycloadditions. Consequently, the cycloaddition of such unactivated compounds, that is, simple unsubstituted dienes and alkenes, catalyzed by transition metals is a major, important area of study.655 In addition, theoretical problems of the transformation have frequently been addressed in the more recent literature. [Pg.347]

The reaction of methylenecyclopropanes with transition metal complexes is well known to promote a catalytic a-ir cycloaddition reaction with unsaturated compounds, in which a trimethylenemethane complex might exist71-76. Recently, much interest has been focused on the interaction of strained silicon-carbon bonds with transition metal complexes. In particular, the reaction of siliranes with acetylene in the presence of transition metal catalysts was extensively investigated by Seyferth s and Ishikawa s groups77-79. In the course of our studies on alkylidenesilirane, we found that palladium catalyzed reaction of Z-79 and E-79 with unsaturated compounds displayed ring expansion reaction modes that depend on the (Z) and (E) regiochemistry of 79 as well as the... [Pg.2424]

Thus far, orbital-symmetry requirements of any reaction have been met by changing the reaction conditions. Another possible approach is to change the orbital-symmetry requirements by adding a third reactant. Volger and Hogeveen (1967) effected the thermally forbidden 2 + 2 cycloaddition by adding transition metal catalysts,... [Pg.235]

This process (hetero Diels-Alder reaction leading to a dihydropyran system) may be also conducted in an asymmetric version application of chiral transition-metal catalysts based on BINOL, BDMAP, bisoxazolines, etc. provides adducts in very high optical purity (ee up to 99%) [1,6], In a series of papers Jurczak reported recently a highly enantioselective cycloaddition of 1-methoxy-1,3-butadiene and butyl glyoxylate catalyzed with chiral salen complexes [21],... [Pg.348]

Compared with the Diels-Alder reaction, the [2+2+2]-cycloaddition is potentially more powerful since the number of new bonds as well as chirality centers that are formed is higher. Unfortunately, the reaction seems to be entropically or kinetically unfavorable. This disadvantage can, however, be overcome by the use of transition metal catalysts (templates). Among the most successful examples of this reaction type, the nickel(II) catalyzed Reppe reactions 96), the cobalt(I) catalyzed cocyclizations of a,to-diynes with alkynes 97), the cobalt(I) catalyzed pyridine synthesis 985 and last but not least the palladium(0) catalyzed cyclotrimerizations of 3,3-dialkylcyclopropenes to frans-cr-tris-homobenzenes must be mentioned. The latter has been known for ten years 99>. [Pg.94]

The latter are of special synthetic interest since they result in the formation of two new C—X bonds (X = C, N). As shown in Scheme 3, thermally induced cycloadditions can only be achieved at high temperatures or when the methylenecyclopropane or the cosubstrate are activated by strong electron-withdrawing groups, such as halogen or CN. As will be outlined in the following chapters, a number of cycloaddition reactions of methylenecyelopropanes can be achieved under moderate conditions and in satisfactory to good yields in the presence of suitable transition metal catalysts. [Pg.103]

Due to their tendency to undergo side reactions and the lack of stereospecificity, free methylene or alkylcarbenes, as generated from diazoalkanes by photolysis or thermal nitrogen extrusion, are of minor synthetic importance for [2 4- 1] cycloadditions. However, transition metal catalysis, most commonly with copper or palladium compounds, offers a convenient solution to this problem (Vol. E19b. p 278)s. Probably the most active catalyst is copper(I) trifluoromcthanesulfonate9. The simple diastereoselectivity of these reactions is often negligible, as demonstrated by the copper(I) chloride or palladium(II) bis(benzonitrilo)dichloride promoted cyclopropanation of phenylethene with diazoethane10. [Pg.980]

J. Phys. Chem. A. 108 (2004) 6017 Chem. Eur. J. 9 (2003) 4540]. This chapter outlines a guide to the qualitative use of the model by discussing a variety of applications, to radical reactions, reactions of electrophiles and nucleophiles, cycloadditions, bond activation by transition metal catalysts, new reaction mechanisms, photochemical reactions, and so on. [Pg.635]

The title reaction exemplifies intriguing features of transition metal catalysis. In the absence of transition metal catalysts, reaction between bicyclo[2.1.0]pentane (11) and electron-poor olefins requires extremely forcing conditions and produces a very complex mixture. For example, because of the molecular orbital (MO) restrictions, tmns-l,2-dicyano-ethylene enters into the 2 + 2 cycloaddition across the central o- bond. [Pg.310]

Recently, Iwasawa established a set of transition metal-catalyzed protocols for an efficient construction of N l-C2-fused polycydic indole skeletons via a cycloisomerization-cycloaddition domino reaction of alkynyl imines 172 [222-224]. It was shown that the latter substrates, upon activation with transition metal catalysts, such as W(0), Pt(II), and Au(III), generate reactive azomethine ylide intermediates 174 similar to 166 (Scheme 9.64). Interception of such yUdes with a variety of suitably substituted alkenes 17S via a [3 - - 2]-cydoaddition affords fused indole products 177 through a transient formation of the corresponding metallocarbenoids 176. Transformation of terminal alkynyl imines proceeds with a 1,2-H shift in the 176, whereas... [Pg.355]


See other pages where Cycloaddition reactions transition metal catalysts is mentioned: [Pg.426]    [Pg.180]    [Pg.278]    [Pg.129]    [Pg.805]    [Pg.167]    [Pg.652]    [Pg.1091]    [Pg.173]    [Pg.163]    [Pg.265]    [Pg.1217]    [Pg.1071]    [Pg.896]    [Pg.106]    [Pg.365]    [Pg.179]    [Pg.79]    [Pg.106]    [Pg.20]    [Pg.106]    [Pg.233]    [Pg.23]    [Pg.265]    [Pg.815]   
See also in sourсe #XX -- [ Pg.5 ]




SEARCH



Transition catalyst

Transition metal catalysts reactions

Transition metal reactions

Transition metals cycloaddition reactions

© 2024 chempedia.info