Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition metal carbenoids

Muller et al. have also examined the enantioselectivity and the stereochemical course of copper-catalyzed intramolecular CH insertions of phenyl-iodonium ylides [34]. The decomposition of diazo compounds in the presence of transition metals leads to typical reactions for metal-carbenoid intermediates, such as cyclopropanations, insertions into X - H bonds, and formation of ylides with heteroatoms that have available lone pairs. Since diazo compounds are potentially explosive, toxic, and carcinogenic, the number of industrial applications is limited. Phenyliodonium ylides are potential substitutes for diazo compounds in metal-carbenoid reactions. Their photochemical, thermal, and transition-metal-catalyzed decompositions exhibit some similarities to those of diazo compounds. [Pg.80]

Transition metal-catalyzed carbenoid transfer reactions, such as alkene cyclopro-panation, C-H insertion, X-H insertion (X = heteroatom), ylide formation, and cycloaddition, are powerful methods for the construction of C-C and C-heteroatom bonds [1-6]. In contrast to a free carbene, metallocarbene-mediated reactions often proceed stereo- and regioselectively under mild conditions with tolerance to a wide range of functionalities. The reactivity and selectivity of metallocarbenes can be... [Pg.112]

When a reaction appears to involve a species that reacts as expected for a carbene but must still be at least partially bound to other atoms, the term carbenoid is used. Some carbenelike processes involve transition metal ions. In many of these reactions, the divalent carbene is bound to the metal. Some compounds of this type are stable, whereas others exist only as transient intermediates. In most cases, the reaction involves the metal-bound carbene, rather than a free carbene. [Pg.905]

In recent years, much attention has been focused on rhodium-mediated carbenoid reactions. One goal has been to understand how the rhodium ligands control reactivity and selectivity, especially in cases in which both addition and insertion reactions are possible. These catalysts contain Rh—Rh bonds but function by mechanisms similar to other transition metal catalysts. [Pg.924]

Despite the volume of work concerned with metal-catalyzed decomposition of diazo compounds and carbenoid reactions 28>, relatively little work has been reported on the metal-catalyzed decomposition of sulphonyl azides. Some metal-aryl nitrene complexes have recently been isolated 29 31>. Nitro compounds have also been reduced to nitrene metal complexes with transition metal oxalates 32K... [Pg.14]

It is not known whether or not this transformation is catalyzed by the transition metal. However, the metal-catalyzed ring-opening reaction of (3-alkoxycyclopropane carboxylates yielding vinyl ethers (e.g. 50 -> 51 and 52 - 53) is well documented 97 120 . Several catalysts are suited [PtCl2 2 PhCN, Rh2(OAc)4, [Rh(CO)2Cl]2, [Ru(CO)3Cl2]2, Cu bronze, CuCl], but with all of them, reaction temperatures higher than those needed for the carbenoid cyclopropanation reaction are required. [Pg.112]

Another remarkable property of iodorhodium(III) porphyrins is their ability to decompose excess diazo compound, thereby initiating carbene transfer reactions 398). This observation led to the use of iodorhodium(III) me.vo-tetraarylporphyrins as cyclopropanation catalysts with enhanced syn anti selectivity (see Sect. 2.2.3) s7, i°o) as wep as catalysts for carbenoid insertion into aliphatic C—H bonds, whereby an unusually high affinity for primary C—H bonds was achieved (see Sect. 6.1)287). These selectivities, unapproached by any other transition metal catalyst,... [Pg.234]

It has been widely accepted that the carbene-transfer reaction using a diazo compound and a transition metal complex proceeds via the corresponding metal carbenoid species. Nishiyama et al. characterized spectroscopically the structure of the carbenoid intermediate that underwent the desired cyclopropanation with high enantio- and diastereoselectivity, derived from (91).254,255 They also isolated a stable dicarbonylcarbene complex and demonstrated by X-ray analysis that the carbene moiety of the complex was almost parallel in the Cl—Ru—Cl plane and perpendicular to the pybox plane (vide infra).255 These results suggest that the rate-determining step of metal-catalyzed cyclopropanation is not carbenoid formation, but the carbene-transfer reaction.254... [Pg.249]

The detailed mechanism of transition metal-catalyzed cyclopropanation using diazo compounds as a carbene source is still covered by clouds of controversy, but it is generally accepted that the reaction proceeds through metal-carbenoid complexes,17-21 and the valency of the metal ions (M) changes with carbenoid formation (Scheme 85). [Pg.255]

Using the results of an earlier study concerning enantioselective copper-catalyzed intramolecular C—H insertion of metal carbenoids,109 an interesting system for optimizing the proper combination of ligand, transition metal, and solvent for the reaction of the diazo compound (75) was devised (see Scheme 19).110 The reaction parameters were varied systematically on a standard 96-well microtiter/filtration plate. A total of five different ligands, seven metal precursors, and four solvents were tested in an iterative optimization mode. Standard HPLC was used to monitor stereoselectivity following DDQ-induced oxidation. This type of catalyst search led to the... [Pg.537]

Carbene complexes can be prepared by reaction of stabilized carbenes or carbenoids (e.g. a-haloorganolithium compounds) with transition metal complexes [610]. This method is particularly useful for the preparation of donor-substituted... [Pg.101]

Many different types of 1,3-dipoles have been described [Ij however, those most commonly formed using transition metal catalysis are the carbonyl ylides and associated mesoionic species such as isomiinchnones. Additional examples include the thiocar-bonyl, azomethine, oxonium, ammonium, and nitrile ylides, which have also been generated using rhodium(II) catalysis [8]. The mechanism of dipole formation most often involves the interaction of an electrophilic metal carbenoid with a heteroatom lone pair. In some cases, however, dipoles can be generated via the rearrangement of a reactive species, such as another dipole [40], or the thermolysis of a three-membered het-erocycHc ring [41]. [Pg.436]

Reaction of diazo compounds with a variety of transition metal compounds leads to evolution of nitrogen and formation of products of the same general type as those formed by thermal and photochemical decomposition of diazoalkanes. These transition metal-catalyzed reactions in general appear to involve carbenoid intermediates in which the carbene becomes bound to the metal.83 The metals which have been used most frequently in synthesis are copper and rhodium. [Pg.622]

Suga et al. (197) reported the first stereocontrolled 1,3-dipolar cycloaddition reactions of carbonyl ylides with electron-deficient alkenes using a Lewis acid catalyst. Carbonyl ylides are highly reactive 1,3-dipoles and cannot be isolated. They are mainly generated through transition metal carbenoid intermediates derived in situ from diazo precursors by treatment with a transition metal catalyst. When methyl o-(diazoacetyl)benzoate is treated with A-methylmaleimide at reflux... [Pg.804]

Oxa-l -silabicyclo[ . 1,0 alkanes (n = 3 111 n = 4 113) were the only products isolated from the photochemical, thermal or transition-metal catalyzed decomposition of (alkenyloxysilyl)diazoacetates 110 and 112, respectively (equation 28)62. The results indicate that intramolecular cyclopropanation is possible via both a carbene and a carbenoid pathway. The efficiency of this transformation depends on the particular system and on the mode of decomposition, but the copper triflate catalyzed reaction is always more efficient than the photochemical route. For the thermally induced cyclopropanation 112 —> 113, a two-step noncarbene pathway at the high reaction temperature appears as an alternative, namely intramolecular cycloaddition of the diazo dipole to the olefinic bond followed by extrusion of N2 from the pyrazoline intermediate. A direct hint to this reaction mode is the formation of 3-methoxycarbonyl-4-methyl-l-oxa-2-sila-3-cyclopentenes instead of cyclopropanes 111 in the thermolysis of 110. [Pg.730]

The metal-carbene bond of NHCs with late transition metals has been studied theoretically and crystallographically.26 Discrepancies between theory and experiment are put down to an increased / -character of the carbenoid carbon rather than a multiple... [Pg.135]

Further restrictions to the scope of the present article concern certain molecules which can in one or more of their canonical forms be represented as carbenes, e.g. carbon monoxide such stable molecules, which do not normally show carbenoid reactivity, will not be considered. Nor will there be any discussion of so-called transition metal-carbene complexes (see, for example, Fischer and Maasbol, 1964 Mills and Redhouse, 1968 Fischer and Riedel, 1968). Carbenes in these complexes appear to be analogous to carbon monoxide in transition-metal carbonyls. Carbenoid reactivity has been observed only in the case of certain iridium (Mango and Dvoretzky, 1966) and iron complexes (Jolly and Pettit, 1966), but detailed examination of the nature of the actual reactive intermediate, that is to say, whether the complexes react as such or first decompose to give free carbenes, has not yet been reported. A chromium-carbene complex has been suggested as a transient intermediate in the reduction of gfem-dihalides by chromium(II) sulphate because of structural effects on the reaction rate and because of the structure of the reaction products, particularly in the presence of unsaturated compounds (Castro and Kray, 1966). The subject of carbene-metal complexes reappears in Section IIIB. [Pg.156]

FIGURE 6.8 The state correlations in the VBSCDs of oxidative—additions of (a) a carbenoid reagent into a C—H bond, and (b) a transition metal complex into a C—X bond. [Pg.135]

Despite the similarity between the processes in Figs. 6.8a and b, there is one immediately notable difference, and this is the stereochemistry of the reaction. Since stereochemical issues are treated later, we mention this here in passing. Thus, inspecting the FO-VB bond diagrams in 19 versus 21 (Scheme 6.5), it is apparent that the oxidative cleavage by a carbenoid will lead to a tetrahedral bond insertion product, while the one formed by use of the transition metal complex will be square planar. These different stereochemistries are well known since a d8 tetracoordinated organometallic complex is expected to be square planar. Still it is interesting to note that these differences are dictated by... [Pg.135]


See other pages where Transition metal carbenoids is mentioned: [Pg.91]    [Pg.807]    [Pg.113]    [Pg.128]    [Pg.209]    [Pg.351]    [Pg.91]    [Pg.238]    [Pg.453]    [Pg.67]    [Pg.185]    [Pg.411]    [Pg.359]    [Pg.332]    [Pg.337]    [Pg.36]    [Pg.288]    [Pg.626]    [Pg.652]    [Pg.207]    [Pg.784]    [Pg.1576]    [Pg.350]    [Pg.67]    [Pg.371]    [Pg.134]   
See also in sourсe #XX -- [ Pg.189 , Pg.198 ]

See also in sourсe #XX -- [ Pg.182 ]




SEARCH



Carbenoid

Carbenoids

Metal-carbenoids

Transition metal catalysts carbenoids

Utilization of Transition-Metal Carbenoids

© 2024 chempedia.info