Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction mechanism cycloaddition

The different possibilities for the creation of the pyrazole ring according to the bonds formed are shown in Scheme 46. It should be noted that this customary classification lacks mechanistic significance actually, only two procedures have mechanistic implications the formation of one bond, and the simultaneous formation of two bonds in cycloaddition reactions (disregarding the problem of the synchronous vs. non-synchronous mechanism). [Pg.274]

The reaction is stereospecific and can be described as a [tz2 + mechanism requires that inversion of configuration occur at C-4 as the new [Pg.760]

The reaction mechanism involves a stage of 1,3-dipolar cycloaddition of the telluroketone 83 to the diazoketone 84 (93CL1047). [Pg.29]

An ANRORC mechanism has also been proposed (besides an inverse cycloaddition reaction) in the conversion of 1-methylpyrimidinium iodide into 3-ethoxycarbonyl-2-methylpyridine on treatment with ethyl -amino-crotonate (95RCB1272) (Scheme 23a). The reaction starts by addition of the -carbon of the crotonate at the electron-deficient 4-position of the... [Pg.47]

The Basic Mechanisms of Cycloaddition Reactions of Carbonyl Compounds with Conjugated Dienes... [Pg.152]

There have been few mechanistic studies of Lewis acid-catalyzed cycloaddition reactions with carbonyl compounds. Danishefsky et ah, for example, concluded that the reaction of benzaldehyde 1 with trans-l-methoxy-3-(trimethylsilyloxy)-l,3-di-methyl-1,3-butadiene (Danishefsky s diene) 2 in the presence of BF3 as the catalyst proceeds via a stepwise mechanism, whereas a concerted reaction occurs when ZnCl2 or lanthanides are used as catalysts (Scheme 4.3) [7]. The evidence of a change in the diastereochemistry of the reaction is that trans-3 is the major cycloaddition product in the Bp3-catalyzed reaction, whereas cis-3 is the major product in, for example, the ZnCl2-catalyzed reaction - the latter resulting from exo addition (Scheme 4.3). [Pg.154]

The mechanism of the reaction of ethyl glyoxylate 4 with 2,3-dimethyl-l,3-hutadiene 5 leading to the ene product 7 is shown in Scheme 4.5. This brief introduction to the reaction mechanism for cycloaddition reactions of carhonyl compounds activated hy Lewis acids indicates that many factors influence the course of the reaction. [Pg.155]

The mechanism of the cycloaddition reaction of benzaldehyde 2a with Danishefsky s diene 3a catalyzed by aluminum complexes has been investigated theoretically using semi-empirical calculations [14]. It was found that the reaction proceeds as a step-wise cycloaddition reaction with the first step being a nucleophilic-like attack of Danishefsky s diene 2a on the coordinated carbonyl compound leading to an aldol-like intermediate which is stabilized by interaction of the cation with the oxygen atom of the Lewis acid. The next step is the ring-closure step, giving the cycloaddition product. [Pg.159]

Chiral salen chromium and cobalt complexes have been shown by Jacobsen et al. to catalyze an enantioselective cycloaddition reaction of carbonyl compounds with dienes [22]. The cycloaddition reaction of different aldehydes 1 containing aromatic, aliphatic, and conjugated substituents with Danishefsky s diene 2a catalyzed by the chiral salen-chromium(III) complexes 14a,b proceeds in up to 98% yield and with moderate to high ee (Scheme 4.14). It was found that the presence of oven-dried powdered 4 A molecular sieves led to increased yield and enantioselectivity. The lowest ee (62% ee, catalyst 14b) was obtained for hexanal and the highest (93% ee, catalyst 14a) was obtained for cyclohexyl aldehyde. The mechanism of the cycloaddition reaction was investigated in terms of a traditional cycloaddition, or formation of the cycloaddition product via a Mukaiyama aldol-reaction path. In the presence of the chiral salen-chromium(III) catalyst system NMR spectroscopy of the crude reaction mixture of the reaction of benzaldehyde with Danishefsky s diene revealed the exclusive presence of the cycloaddition-pathway product. The Mukaiyama aldol condensation product was prepared independently and subjected to the conditions of the chiral salen-chromium(III)-catalyzed reactions. No detectable cycloaddition product could be observed. These results point towards a [2-i-4]-cydoaddition mechanism. [Pg.162]

The major developments of catalytic enantioselective cycloaddition reactions of carbonyl compounds with conjugated dienes have been presented. A variety of chiral catalysts is available for the different types of carbonyl compound. For unactivated aldehydes chiral catalysts such as BINOL-aluminum(III), BINOL-tita-nium(IV), acyloxylborane(III), and tridentate Schiff base chromium(III) complexes can catalyze highly diastereo- and enantioselective cycloaddition reactions. The mechanism of these reactions can be a stepwise pathway via a Mukaiyama aldol intermediate or a concerted mechanism. For a-dicarbonyl compounds, which can coordinate to the chiral catalyst in a bidentate fashion, the chiral BOX-copper(II)... [Pg.182]

A model for the mechanism of the highly enantioselective AlMe-BINOL-cata-lyzed 1,3-dipolar cycloaddition reaction was proposed as illustrated in Scheme 6.13. In the first step nitrone la coordinates to the catalyst 11b to form intermediate 12. In intermediate 13, which is proposed to account for the absolute stereoselectivity of this reaction, it is apparent that one of the faces of the nitrone, the si face, is shielded by the ligand whereas the re face remains available... [Pg.220]

Figure 14.7 Mechanism of the Diels-Alder cycloaddition reaction. The reaction occurs in a single step through a cyclic transition state in which the two new carbon-carbon bonds form simultaneously. Figure 14.7 Mechanism of the Diels-Alder cycloaddition reaction. The reaction occurs in a single step through a cyclic transition state in which the two new carbon-carbon bonds form simultaneously.
We ve seen that the Diels-Alder cycloaddition reaction is a one-step, peri-cyclic process that occurs through a cyclic transition state. Propose a mechanism for the following reaction ... [Pg.512]

Stabilised sulphur ylides react with alkenylcarbene complexes to form a mixture of different products depending on the reaction conditions. However, at -40 °C the reaction results in the formation of almost equimolecular amounts of vinyl ethers and diastereomeric cyclopropane derivatives. These cyclopropane products are derived from a formal [2C+1S] cycloaddition reaction and the mechanism that explains its formation implies an initial 1,4-addition to form a zwitterionic intermediate followed by cyclisation. Oxidation of the formed complex renders the final products [30] (Scheme 8). [Pg.68]

The [3S+1C] cycloaddition reaction with Fischer carbene complexes is a very unusual reaction pathway. In fact, only one example has been reported. This process involves the insertion of alkyl-derived chromium carbene complexes into the carbon-carbon a-bond of diphenylcyclopropenone to generate cyclobutenone derivatives [41] (Scheme 13). The mechanism of this transformation involves a CO dissociation followed by oxidative addition into the cyclopropenone carbon-carbon a-bond, affording a metalacyclopentenone derivative which undergoes reductive elimination to produce the final cyclobutenone derivatives. [Pg.71]

The diastereofacial selectivity of this asymmetric [3C+2S] process is explained following a model similar to that described in Sect. 2.6.4.4 for the reaction of chiral alkenylcarbene complexes and 1,3-dienes. Thus, the proposed mechanism that explains the stereochemistry observed assumes a [4+2] cycloaddition reaction between the chromadiene system and the C=N double bond of the imine. The necessary s-cis conformation of the complex makes the imine... [Pg.81]

The reaction of ethyl 2,2-diethoxyacrylate with alkynylalkoxycarbene complexes affords 6-ethoxy-2H-2-pyranylidene metal complexes [92] (Scheme 48). The mechanism that explains this process is initiated by a [2+2] cycloaddition reaction (see Sect. 2.3), followed by a cyclobutene ring opening to generate a tetracarbonylcarbene complex. This complex can be isolated and on standing for one day at room temperature renders the final 6-ethoxy-2Ff-pyranylidene pentacarbonyl complex. This last transformation requires the formal transfer of one carbonyl group and one proton from the diethoxy methylene moiety to the metal and to the C3 2H-pyranylidene ring, respectively, with concomitant cyclisation. Further studies on this unusual transformation have been extensively performed by Moreto et al. [93]. [Pg.92]

The reaction of methyl acrylate and acrylonitrile with pentacarbonyl[(iV,iV -di-methylamino)methylene] chromium generates trisubstituted cyclopentanes through a formal [2S+2S+1C] cycloaddition reaction, where two molecules of the olefin and one molecule of the carbene complex have been incorporated into the structure of the cyclopentane [17b] (Scheme 73). The mechanism of this reaction implies a double insertion of two molecules of the olefin into the carbene complex followed by a reductive elimination. [Pg.107]


See other pages where Reaction mechanism cycloaddition is mentioned: [Pg.336]    [Pg.344]    [Pg.347]    [Pg.336]    [Pg.344]    [Pg.347]    [Pg.9]    [Pg.55]    [Pg.723]    [Pg.217]    [Pg.245]    [Pg.43]    [Pg.235]    [Pg.153]    [Pg.170]    [Pg.227]    [Pg.236]    [Pg.273]    [Pg.308]    [Pg.339]    [Pg.218]    [Pg.1292]    [Pg.115]    [Pg.286]    [Pg.68]    [Pg.29]    [Pg.62]    [Pg.80]   
See also in sourсe #XX -- [ Pg.124 ]

See also in sourсe #XX -- [ Pg.5 , Pg.124 ]

See also in sourсe #XX -- [ Pg.124 ]




SEARCH



1.3- Dipolar cycloaddition reactions mechanism

1.3- Dipolar cycloaddition reactions stepwise mechanism

Cycloaddition reactions electron transfer mechanism

Cycloaddition reactions, allylic derivatives mechanisms

Diels-Alder cycloaddition reaction mechanism

External reagents, 1,3-dipolar cycloaddition reaction mechanisms

Mechanism of Cycloaddition Reactions

© 2024 chempedia.info