Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Inverse cycloaddition reactions

The hetero Diels-Alder [4+2] cycloaddition (HDA reaction) is a very efficient methodology to perform pyrimidine-to-pyridine transformations. Normal (NHDA) and Inverse (IHDA) cycloaddition reactions, intramolecular as well as intermolecular, are reported, although the IHDA cycloadditions are more frequently observed. The NHDA reactions require an electron-rich heterocycle, which reacts with an electron-poor dienophile, while in the IHDA cycloadditions a n-electron-deficient heterocycle reacts with electron-rich dienophiles, such as 0,0- and 0,S-ketene acetals, S,S-ketene thioacetals, N,N-ketene acetals, enamines, enol ethers, ynamines, etc. [Pg.51]

Inverse Electron Demand Diels-Alder Cycloaddition (iEDDA) Reaction... [Pg.139]

The inverse electron demand Diels-Alder cycloaddition (iEDDA) reaction between strained alkenes and tetrazine derivatives has gained more and more attention for orthogonal labeling of biomolecules in the last years (Fig. IE) [63]. This catalyst-free reaction can be extremely rapid in the case of tranr-cyclooctenes as reactants with second order rate constants of up to 380,000 s in aqueous solutions... [Pg.139]

Pyridazine carboxylates and dicarboxylates undergo cycloaddition reactions with unsaturated compounds with inverse electron demand to afford substituted pyridines and benzenes respectively (Scheme 45). [Pg.31]

Nitrile ylides derived from the photolysis of 1-azirines have also been found to undergo a novel intramolecular 1,1-cycloaddition reaction (75JA3862). Irradiation of (65) gave a 1 1 mixture of azabicyclohexenes (67) and (68). On further irradiation (67) was quantitatively isomerized to (68). Photolysis of (65) in the presence of excess dimethyl acetylenedicar-boxylate resulted in the 1,3-dipolar trapping of the normal nitrile ylide. Under these conditions, the formation of azabicyclohexenes (67) and (68) was entirely suppressed. The photoreaction of the closely related methyl-substituted azirine (65b) gave azabicyclohexene (68b) as the primary photoproduct. The formation of the thermodynamically less favored endo isomer, i.e. (68b), corresponds to a complete inversion of stereochemistry about the TT-system in the cycloaddition process. [Pg.58]

Diaziridine, 3-benzyl-1,3-dimethyl-inversion, 7, 7 Diaziridine, 1,2-dialkyl-reaction with iodides, 7, 217 thermal decomposition, 7, 217 Diaziridine, dibenzoyl-rearrangement, 7, 214 Diaziridine, 3,3-dimethyl-Raman spectra, 7, 202 Diaziridine, fluoro-synthesis, 7, 232 Diaziridines acylation, 7, 213 from azomethines, 7, 231 calculations, 7, 198 from chloramine, 7, 230 cycloaddition reactions, 7, 28 electron diffraction, 7, 19 199 c/s-fused NMR, 7, 201 hydrolysis, 7, 216 inversion stability, 7, 200... [Pg.597]

The reaction is stereospecific and can be described as a [tz2 + mechanism requires that inversion of configuration occur at C-4 as the new [Pg.760]

Besides nucleophile-induced transformations the Hetero Diels-Alder (HDA) cycloaddition reactions are also very suitable ways to perform the pyrimidine-to-pyridine ring transformations. They can occur either by a reaction of an electron-poor pyrimidine system with an electron-rich dienophile (inverse HDA reactions) or by reacting an electron-enriched pyrimidine with an electron-poor dienophile (normal HDA reactions) (see Section II.B). [Pg.33]

An ANRORC mechanism has also been proposed (besides an inverse cycloaddition reaction) in the conversion of 1-methylpyrimidinium iodide into 3-ethoxycarbonyl-2-methylpyridine on treatment with ethyl -amino-crotonate (95RCB1272) (Scheme 23a). The reaction starts by addition of the -carbon of the crotonate at the electron-deficient 4-position of the... [Pg.47]

The bicyclic system quinazoline undergoes intermolecular inverse cycloaddition reactions with enamines RRiNCR2=CHR3 (RRi=(CH2)3, R2 = Ph, R3 = H) yielding 2,3-disubstituted quinolines. [Pg.54]

Whereas in all previously mentioned inverse cycloaddition reactions [h]-fused pyrido annelated systems are formed, some reactions are described which lead to [c]-pyridine annelated bicyclic systems. 5-(Butynylthio)pyrimidines (R = Ph, NHCOCH3) give on heating at 180°C in nitrobenzene 5-R-2,3-dihydrothieno[2,3-c]pyridines (89T803). 5-Propynyloxymethylpyrimidines also readily undergo cycloaddition into l,3-dihydrofuro[3,4-c]pyridines (89T5151) (Scheme 39). Considerable rate enhancements were observed with quaternized pyrimidinium salts. Whereas... [Pg.58]

Most reactions discussed can be classified into two types of [n s+iAs cycloadditions, the normal and inverse electron-demand cycloaddition reactions, based on the relative energies of the frontier molecular orbitals of the diene and the dieno-phile (Scheme 4.2) [4]. [Pg.152]

The normal electron-demand reaction is a HOMOdiene-LUMOdienophUeelectron-rich dienes and electron-deficient dienophiles (Scheme 4.2, left dotted line). The inverse electron-demand cycloaddition reaction is primarily controlled by a LUMOdiene HOMOdienophiie inter-... [Pg.152]

INVERSE-ELECTRON DEMAND LUMO(jjend dienephile controliGd cycloaddition reactions... [Pg.153]

A simple approach for the formation of 2-substituted 3,4-dihydro-2H-pyrans, which are useful precursors for natural products such as optically active carbohydrates, is the catalytic enantioselective cycloaddition reaction of a,/ -unsaturated carbonyl compounds with electron-rich alkenes. This is an inverse electron-demand cycloaddition reaction which is controlled by a dominant interaction between the LUMO of the 1-oxa-1,3-butadiene and the HOMO of the alkene (Scheme 4.2, right). This is usually a concerted non-synchronous reaction with retention of the configuration of the die-nophile and results in normally high regioselectivity, which in the presence of Lewis acids is improved and, furthermore, also increases the reaction rate. [Pg.178]

The inverse electron-demand catalytic enantioselective cycloaddition reaction has not been investigated to any great extent. Tietze et al. published the first example of this class of reaction in 1992 - an intramolecular cycloaddition of heterodiene 42 catalyzed by a diacetone glucose derived-titanium(IV) Lewis acid 44 to give the cis product 43 in good yield and up to 88% ee (Scheme 4.31) [46]. [Pg.178]

Our development of the catalytic enantioselective inverse electron-demand cycloaddition reaction [49], which was followed by related papers by Evans et al. [38, 48], focused in the initial phase on the reaction of mainly / , y-unsaturated a-keto esters 53 with ethyl vinyl ether 46a and 2,3-dihydrofuran 50a (Scheme 4.34). [Pg.179]

The absolute configuration of products obtained in the highly stereoselective cycloaddition reactions with inverse electron-demand catalyzed by the t-Bu-BOX-Cu(II) complex can also be accounted for by a square-planar geometry at the cop-per(II) center. A square-planar intermediate is supported by the X-ray structure of the hydrolyzed enone bound to the chiral BOX-copper(II) catalyst, shown as 29b in Scheme 4.24. [Pg.181]

The inverse electron-demand 1,3-dlpolar cycloaddition reaction... [Pg.215]

Scheeren et al. reported the first enantioselective metal-catalyzed 1,3-dipolar cycloaddition reaction of nitrones with alkenes in 1994 [26]. Their approach involved C,N-diphenylnitrone la and ketene acetals 2, in the presence of the amino acid-derived oxazaborolidinones 3 as the catalyst (Scheme 6.8). This type of boron catalyst has been used successfully for asymmetric Diels-Alder reactions [27, 28]. In this reaction the nitrone is activated, according to the inverse electron-demand, for a 1,3-dipolar cycloaddition with the electron-rich alkene. The reaction is thus controlled by the LUMO inone-HOMOaikene interaction. They found that coordination of the nitrone to the boron Lewis acid strongly accelerated the 1,3-dipolar cycloaddition reaction with ketene acetals. The reactions of la with 2a,b, catalyzed by 20 mol% of oxazaborolidinones such as 3a,b were carried out at -78 °C. In some reactions fair enantioselectivities were induced by the catalysts, thus, 4a was obtained with an optical purity of 74% ee, however, in a low yield. The reaction involving 2b gave the C-3, C-4-cis isomer 4b as the only diastereomer of the product with 62% ee. [Pg.218]

A quite different type of titanium catalyst has been used in an inverse electron-demand 1,3-dipolar cycloaddition. Bosnich et al. applied the chiral titanocene-(OTf)2 complex 32 for the 1,3-dipolar cycloaddition between the cyclic nitrone 14a and the ketene acetal 2c (Scheme 6.25). The reaction only proceeded in the presence of the catalyst and a good cis/trans ratio of 8 92 was obtained using catalyst 32, however, only 14% ee was observed for the major isomer [70]. [Pg.231]

The enantioselective inverse electron-demand 1,3-dipolar cycloaddition reactions of nitrones with alkenes described so far were catalyzed by metal complexes that favor a monodentate coordination of the nitrone, such as boron and aluminum complexes. However, the glyoxylate-derived nitrone 36 favors a bidentate coordination to the catalyst. This nitrone is a very interesting substrate, since the products that are obtained from the reaction with alkenes are masked a-amino acids. One of the characteristics of nitrones such as 36, having an ester moiety in the a position, is the swift E/Z equilibrium at room temperature (Scheme 6.28). In the crystalline form nitrone 36 exists as the pure Z isomer, however, in solution nitrone 36 have been shown to exists as a mixture of the E and Z isomers. This equilibrium could however be shifted to the Z isomer in the presence of a Lewis acid [74]. [Pg.233]

The reactions of nitrones constitute the absolute majority of metal-catalyzed asymmetric 1,3-dipolar cycloaddition reactions. Boron, aluminum, titanium, copper and palladium catalysts have been tested for the inverse electron-demand 1,3-dipolar cycloaddition reaction of nitrones with electron-rich alkenes. Fair enantioselectivities of up to 79% ee were obtained with oxazaborolidinone catalysts. However, the AlMe-3,3 -Ar-BINOL complexes proved to be superior for reactions of both acyclic and cyclic nitrones and more than >99% ee was obtained in some reactions. The Cu(OTf)2-BOX catalyst was efficient for reactions of the glyoxylate-derived nitrones with vinyl ethers and enantioselectivities of up to 93% ee were obtained. [Pg.244]

Honk et al. concluded that this FMO model imply increased asynchronicity in the bond-making processes, and if first-order effects (electrostatic interactions) were also considered, a two-step mechanisms, with cationic intermediates become possible in some cases. It was stated that the model proposed here shows that the phenomena generally observed on catalysis can be explained by the concerted mechanism, and allows predictions of the effect of Lewis acid on the rates, regioselectivity, and stereoselectivity of all concerted cycloadditions, including those of ketenes, 1,3-dipoles, and Diels-Alder reactions with inverse electron-demand [2],... [Pg.305]

In an investigation by Yamabe et al. [9] of the fine tuning of the [4-1-2] and [2-1-4] cycloaddition reaction of acrolein with butadiene catalyzed by BF3 and AICI3 using a larger basis set and more sophisticated calculations, the different reaction paths were also studied. The activation energy for the uncatalyzed reaction were calculated to be 17.52 and 16.80 kcal mol for the exo and endo transition states, respectively, and is close to the experimental values for s-trans-acrolein. For the BF3-catalyzed reaction the transition-state energies were calculated to be 10.87 and 6.09 kcal mol , for the exo- and endo-reaction paths, respectively [9]. The calculated transition-state structures for this reaction are very asynchronous and similar to those obtained by Houk et al. The endo-reaction path for the BF3-catalyzed reaction indicates that an inverse electron-demand C3-0 bond formation (2.635 A... [Pg.307]

The final class of reactions to be considered will be the [4 + 2]-cycloaddition reaction of nitroalkenes with alkenes which in principle can be considered as an inverse electron-demand hetero-Diels-Alder reaction. Domingo et al. have studied the influence of reactant polarity on the reaction course of this type of reactions using DFT calculation in order to understand the regio- and stereoselectivity for the reaction, and the role of Lewis acid catalysis [29]. The reaction of e.g. ni-troethene 15 with an electron-rich alkene 16 can take place in four different ways and the four different transition-state structures are depicted in Fig. 8.16. [Pg.320]

The other catalytic approach to the 1,3-dipolar cycloaddition reaction is the inverse electron-demand (Fig. 8.17, right), in which the nitrone is coordinated to the Lewis acid, which for the reaction in Scheme 8.7 was found to be deactivated compared to the uncatalyzed reaction. In order for a 1,3-dipolar cycloaddition to proceed under these restrictions the alkene should be substituted with electron-donating substituents. [Pg.323]

Interestingly, in the inverse-electron-demand Diels-Alder reactions of oxepin with various enophiles such as cyclopentadienones and tetrazines the oxepin form, rather than the benzene oxide, undergoes the cycloaddition.234 236 Usually, the central C-C double bond acts as dienophile. Oxepin reacts with 2,5-dimethyl-3,4-diphenylcyclopenta-2,4-dienone to give the cycloadduct 6 across the 4,5-C-C double bond of the heterocycle.234 The adduct resists thermal carbon monoxide elimination but undergoes cycloreversion to oxepin and the cyclopenta-dienone.234... [Pg.52]

V-Acyliminium ions act as dienophiles in [4 + 2] cycloaddition reactions with conjugated dienes13, while A-acylimimum ions that (can) adopt an x-cis conformation are able to act as heterodienes in an inverse electron demand Diels-Alder process with alkenes or alkynes3 (see Section D. 1.6.1.1.). [Pg.804]


See other pages where Inverse cycloaddition reactions is mentioned: [Pg.160]    [Pg.383]    [Pg.234]    [Pg.506]    [Pg.32]    [Pg.43]    [Pg.526]    [Pg.527]    [Pg.628]    [Pg.882]    [Pg.291]    [Pg.153]    [Pg.170]    [Pg.181]    [Pg.183]    [Pg.214]    [Pg.239]    [Pg.302]    [Pg.322]    [Pg.323]    [Pg.325]   
See also in sourсe #XX -- [ Pg.120 ]




SEARCH



© 2024 chempedia.info