Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cycloaddition reactions ligand

A series of chiral binaphthyl ligands in combination with AlMe3 has been used for the cycloaddition reaction of enamide aldehydes with Danishefsky s diene for the enantioselective synthesis of a chiral amino dihydroxy molecule [15]. The cycloaddition reaction, which was found to proceed via a Mukaiyama aldol condensation followed by a cyclization, gives the cycloaddition product in up to 60% yield and 78% ee. [Pg.159]

The cycloaddition reaction between ethyl glyoxylate 4a and Danishefsky s diene 2a has been investigated by Ghosh et al. applying catalyst systems derived from Cu(OTf)2 and ligands (S)-Ph-BOX (S)-21a, (S)-t-Bu-BOX (S)-21b, and the confer-... [Pg.168]

This methodology has been used for the synthesis of the C3-C14 segment 24 of the antitumor agent laulimalide 23 (Scheme 4.22) [35]. The constrained chiral BOX ligand 21c in combination with Cu(OTf)2 afforded dihydropyrane 6f by a cycloaddition reaction in good yield and ee this was converted to the C3-C14 segment 24 via a Ferrier-type rearrangement in several steps. [Pg.169]

A model for the mechanism of the highly enantioselective AlMe-BINOL-cata-lyzed 1,3-dipolar cycloaddition reaction was proposed as illustrated in Scheme 6.13. In the first step nitrone la coordinates to the catalyst 11b to form intermediate 12. In intermediate 13, which is proposed to account for the absolute stereoselectivity of this reaction, it is apparent that one of the faces of the nitrone, the si face, is shielded by the ligand whereas the re face remains available... [Pg.220]

Several titanium(IV) complexes are efficient and reliable Lewis acid catalysts and they have been applied to numerous reactions, especially in combination with the so-called TADDOL (a, a,a, a -tetraaryl-l,3-dioxolane-4,5-dimethanol) (22) ligands [53-55]. In the first study on normal electron-demand 1,3-dipolar cycloaddition reactions between nitrones and alkenes, which appeared in 1994, the catalytic reaction of a series of chiral TiCl2-TADDOLates on the reaction of nitrones 1 with al-kenoyloxazolidinones 19 was developed (Scheme 6.18) [56]. These substrates have turned out be the model system of choice for most studies on metal-catalyzed normal electron-demand 1,3-dipolar cycloaddition reactions of nitrones as it will appear from this chapter. When 10 mol% of the catalyst 23a was applied in the reaction depicted in Scheme 6.18 the reaction proceeded to give a yield of up to 94% ee after 20 h. The reaction led primarily to exo-21 and in the best case an endo/ exo ratio of 10 90 was obtained. The chiral information of the catalyst was transferred with a fair efficiency to the substrates as up to 60% ee of one of the isomers of exo3 was obtained [56]. [Pg.226]

Metal-catalyzed cycloaddition reactions have been in intensive development in recent years and many aspects of the various types of reaction are covered in the many different books, reviews, and numerous research papers dealing with the topic. The focus of the work performed in the field of metal-catalyzed cycloaddition reactions has been devoted to the development of the reactions i.e. screening reaction conditions (e.g. different metals and ligands), substrates, and showing that the reaction developed might have a potential for the synthesis of products of general interests. [Pg.301]

All around this chapter, we have seen that a,/J-unsaturated Fischer carbene complexes may act as efficient C3-synthons. As has been previously mentioned, these complexes contain two electrophilic positions, the carbene carbon and the /J-carbon (Fig. 3), so they can react via these two positions with molecules which include two nucleophilic positions in their structure. On the other hand, alkenyl- and alkynylcarbene complexes are capable of undergoing [1,2]-migration of the metalpentacarbonyl allowing an electrophilic-to-nucleophilic polarity change of the carbene ligand /J-carbon (Fig. 3). These two modes of reaction along with other processes initiated by [2+2] cycloaddition reactions have been applied to [3+3] cyclisation processes and will be briefly discussed in the next few sections. [Pg.88]

Aryl- and alkenylcarbene complexes are known to react with alkynes through a [3C+2S+1C0] cycloaddition reaction to produce benzannulated compounds. This reaction, known as the Dotz reaction , is widely reviewed in Chap. Chromium-Templated Benzannulation Reactions , p. 123 of this book. However, simple alkyl-substituted carbene complexes react with excess of an alkyne (or with diynes) to produce a different benzannulated product which incorporates in its structure two molecules of the alkyne, a carbon monoxide ligand and the carbene carbon [128]. As referred to before, this [2S+2SH-1C+1C0] cycloaddition reaction can be carried out with diyne derivatives, showing these reactions give better yields than the corresponding intermolecular version (Scheme 80). [Pg.112]

Another example of a [2s+2sh-1c+1co] cycloaddition reaction was observed by Barluenga et al. in the sequential coupling reaction of a Fischer carbene complex, a ketone enolate and allylmagnesium bromide [120]. This reaction produces cyclopentanol derivatives in a [2S+2SH-1C] cycloaddition process when -substituted lithium enolates are used (see Sect. 3.1). However, the analogous reaction with /J-unsubstituted lithium enolates leads to the diastereoselective synthesis of 1,3,3,5-tetrasubstituted cyclohexane- 1,4-diols. The ring skeleton of these compounds combines the carbene ligand, the enolate framework, two carbons of the allyl unit and a carbonyl ligand. Overall, the process can be considered as a for-... [Pg.112]

Epoxidations of chiral allenamides lead to chiral nitrogen-stabilized oxyallyl catioins that undergo highly stereoselective (4 + 3) cycloaddition reactions with electron-rich dienes.6 These are the first examples of epoxidations of allenes, and the first examples of chiral nitrogen-stabilized oxyallyl cations. Further elaboration of the cycloadducts leads to interesting chiral amino alcohols that can be useful as ligands in asymmetric catalysis (Scheme 2). [Pg.79]

The NHCs have been used as ligands of different metal catalysts (i.e. copper, nickel, gold, cobalt, palladium, rhodium) in a wide range of cycloaddition reactions such as [4-1-2] (see Section 5.6), [3h-2], [2h-2h-2] and others. These NHC-metal catalysts have allowed reactions to occur at lower temperature and pressure. Furthermore, some NHC-TM catalysts even promote previously unknown reactions. One of the most popular reactions to generate 1,2,3-triazoles is the 1,3-dipolar Huisgen cycloaddition (reaction between azides and alkynes) [8]. Lately, this [3h-2] cycloaddition reaction has been aided by different [Cu(NHC)JX complexes [9]. The reactions between electron-rich, electron-poor and/or hindered alkynes 16 and azides 17 in the presence of low NHC-copper 18-20 loadings (in some cases even ppm amounts were used) afforded the 1,2,3-triazoles 21 regioselectively (Scheme 5.5 Table 5.2). [Pg.134]

Enediynes 38 undergo [2+2+2] cycloaddition reactions to afford polycyclic cyclohexadienes 39 in presence of a cobalt catalyst (Scheme 5.11) [14]- In this system, the presence of a NHC ligand improved the catalytic power of cobalt when compared with phosphine ligands. In addition to increased yields, lower ligand... [Pg.137]

A variety of triazole-based monophosphines (ClickPhos) 141 have been prepared via efficient 1,3-dipolar cycloaddition of readily available azides and acetylenes and their palladium complexes provided excellent yields in the amination reactions and Suzuki-Miyaura coupling reactions of unactivated aryl chlorides <06JOC3928>. A novel P,N-type ligand family (ClickPhine) is easily accessible using the Cu(I)-catalyzed azide-alkyne cycloaddition reaction and was tested in palladium-catalyzed allylic alkylation reactions <06OL3227>. Novel chiral ligands, (S)-(+)-l-substituted aryl-4-(l-phenyl) ethylformamido-5-amino-1,2,3-triazoles 142,... [Pg.229]

CARRUTHERS Cycloaddition Reactions in Organic Synthesis CLARIDGE High-Resolution NMR Techniques in Organic Chemistry FINET Ligand Coupling Reactions with Heteroatomic Compounds GAWLEY AUBE Principles of Asymmetric Synthesis... [Pg.403]

The 1,3-dipolar cycloaddition of nitrones to vinyl ethers is accelerated by Ti(IV) species. The efficiency of the catalyst depends on its complexation capacity. The use of Ti( PrO)2Cl2 favors the formation of trans cycloadducts, presumably, via an endo bidentate complex, in which the metal atom is simultaneously coordinated to the vinyl ether and to the cyclic nitrone or to the Z-isomer of the acyclic nitrones (800a). Highly diastereo- and enantioselective 1,3-dipolar cycloaddition reactions of nitrones with alkenes, catalyzed by chiral polybi-naphtyl Lewis acids, have been developed. Isoxazolidines with up to 99% ee were obtained. The chiral polymer ligand influences the stereoselectivity to the same extent as its monomeric version, but has the advantage of easy recovery and reuse (800b). [Pg.358]


See other pages where Cycloaddition reactions ligand is mentioned: [Pg.311]    [Pg.152]    [Pg.157]    [Pg.167]    [Pg.168]    [Pg.170]    [Pg.171]    [Pg.174]    [Pg.183]    [Pg.218]    [Pg.224]    [Pg.224]    [Pg.227]    [Pg.227]    [Pg.230]    [Pg.232]    [Pg.236]    [Pg.241]    [Pg.242]    [Pg.250]    [Pg.285]    [Pg.311]    [Pg.28]    [Pg.62]    [Pg.150]    [Pg.131]    [Pg.184]    [Pg.83]    [Pg.128]    [Pg.426]    [Pg.226]    [Pg.495]    [Pg.386]    [Pg.669]    [Pg.686]    [Pg.248]   
See also in sourсe #XX -- [ Pg.179 ]




SEARCH



Ligand 2 + 2 cycloaddition

© 2024 chempedia.info