Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cycloaddition reactions, hetero-

An attractive entry to the carbohydrate synthesis is provided by the cycloaddition reaction. Hetero-Diels-Alder reaction, either between an oxa-diene (a,[3-unsaturated aldehyde) and an nucleophilic dienophile, or between activated diene and carbonyl compound (usually an aldehyde), leads to dihydropyrans, which can be subsequently functionalized to sugars in the desired manner (Scheme 3). [Pg.617]

Sulfonium ylides may be added to C N double bonds to yield aziridines in a formal [1 -t-2]-cycloaddition. Alkyl azides are decomposed upon heating or irradiating to yield ni-trenes, which may also undergo [ 1 + 2 -cycloaddition reactions to yield highly strained hetero-cycles (A.G. Hortmann, 1972). [Pg.154]

Perfluoroalkyl groups adjacent to multiple bond systems lower the frontier molecular orbitals (FMOs) Therefore, cycloaddition reactions preferentially occur with electron-rich multiple-bond systems The preference of bis(trifluoromethyl)-substituted hetero-l,3-dienes for polar reacuons makes them excellent model compounds for developing new types of diene reactions deviating from the well documented Diels-Alder scheme (pathway 1) A systematic study of the reactions of diene (1 =2-3=4)-dienophile (5=6) combinations reveals new synthetic possibilities that have not yet been fully exploited as tools for preparative organic cherrustry (equation 25)... [Pg.853]

The chalcogene heterocycles have been used as stable precursors for sulfur-said selenium-cantaining hetero-l,3-dienes in cycloaddition reactions 3//-l,2,4-Thiaselenazoles are a convenient source of 4,4-bis(trifluoromethyl)-l-thia-3-aza-buta-1,3-dienes, and 3//-diselenazoles are a convenient source of 4,4-bis(trifluoromethyl)-l-selena-3-azabuta-l,3-dienes as well as bis(tnfluoro-methyl)-substrtuted nitrile ylides [137]... [Pg.857]

Cycloaddition reactions where bis(trifluoromethyl)-substituted hetero-1,3-dienes act as dienophiles have been descnbed for open-chain and cyclic dienes [115, 126, 127] The balance of the diene -dienophile activity of bis(tnfluoro-methyl)-substituted hetero-l,3-dienes can be influenced strongly by the substituents bonded to the inuno nitrogen atom For instance, A/-(arylsulfonyl) denvatives of tnfluoroacetaldimine and hexafluoroacetone imine do not act as dienes but exhibit only the dienophile reactivity of electron deficient imines [5 229, 234,235, 236 237] (equation 52)... [Pg.871]

Cycloaddition Reactions with Trifluoromethyl-Substituted Hetero-1,3-dienes... [Pg.871]

The reactions of bis(trifluoromethyl)-subsatuted hetero 1,3 dienes are predomi nantly LLJMO controlled processes [238] With polar or highly polarizable dieno philes, the tendency to undergo stepwise cycloaddition reactions is considerable Notably these hetero-1,3-dienes react with a,(l unsaturated hetero multiple bond systems across the hetero multiple bond exclusively [243, 246 248] (equation 53)... [Pg.872]

This new reaction type should be transferable to nonfluorinated hetero-1,3-di-enes that are capable of stepwise cycloaddition reactions... [Pg.873]

Besides nucleophile-induced transformations the Hetero Diels-Alder (HDA) cycloaddition reactions are also very suitable ways to perform the pyrimidine-to-pyridine ring transformations. They can occur either by a reaction of an electron-poor pyrimidine system with an electron-rich dienophile (inverse HDA reactions) or by reacting an electron-enriched pyrimidine with an electron-poor dienophile (normal HDA reactions) (see Section II.B). [Pg.33]

The hetero Diels-Alder [4+2] cycloaddition (HDA reaction) is a very efficient methodology to perform pyrimidine-to-pyridine transformations. Normal (NHDA) and Inverse (IHDA) cycloaddition reactions, intramolecular as well as intermolecular, are reported, although the IHDA cycloadditions are more frequently observed. The NHDA reactions require an electron-rich heterocycle, which reacts with an electron-poor dienophile, while in the IHDA cycloadditions a n-electron-deficient heterocycle reacts with electron-rich dienophiles, such as 0,0- and 0,S-ketene acetals, S,S-ketene thioacetals, N,N-ketene acetals, enamines, enol ethers, ynamines, etc. [Pg.51]

This chapter will try to cover some developments in the theoretical understanding of metal-catalyzed cycloaddition reactions. The reactions to be discussed below are related to the other chapters in this book in an attempt to obtain a coherent picture of the metal-catalyzed reactions discussed. The intention with this chapter is not to go into details of the theoretical methods used for the calculations - the reader must go to the original literature to obtain this information. The examples chosen are related to the different chapters, i.e. this chapter will cover carbo-Diels-Alder, hetero-Diels-Alder and 1,3-dipolar cycloaddition reactions. Each section will start with a description of the reactions considered, based on the frontier molecular orbital approach, in an attempt for the reader to understand the basis molecular orbital concepts for the reaction. [Pg.301]

The final class of reactions to be considered will be the [4 + 2]-cycloaddition reaction of nitroalkenes with alkenes which in principle can be considered as an inverse electron-demand hetero-Diels-Alder reaction. Domingo et al. have studied the influence of reactant polarity on the reaction course of this type of reactions using DFT calculation in order to understand the regio- and stereoselectivity for the reaction, and the role of Lewis acid catalysis [29]. The reaction of e.g. ni-troethene 15 with an electron-rich alkene 16 can take place in four different ways and the four different transition-state structures are depicted in Fig. 8.16. [Pg.320]

The theoretical investigations of Lewis acid-catalyzed 1,3-dipolar cycloaddition reactions are also very limited and only papers dealing with cycloaddition reactions of nitrones with alkenes have been investigated. The Influence of the Lewis acid catalyst on these reactions are very similar to what has been calculated for the carbo- and hetero-Diels-Alder reactions. The FMOs are perturbed by the coordination of the substrate to the Lewis acid giving a more favorable reaction with a lower transition-state energy. Furthermore, a more asynchronous transition-structure for the cycloaddition step, compared to the uncatalyzed reaction, has also been found for this class of reactions. [Pg.326]

The utility of alkenylcarbene complexes as C3 building blocks in the [3C+2S] cycloaddition reaction has been demonstrated by the wide variety of five-membered hetero- and carbocycles obtained when these complexes are treated with several C2 building block reagents. This impressive chemistry will be briefly discussed in the next few sections. [Pg.78]

Stereoselective inverse-demand hetero (4 + 2) cycloadditions. A Chiral Template for C-Aryl Glycoside Synthesis. Chiral allenamides2 4 had been used in highly stereoselective inverse-demand hetero (4 + 2) cycloaddition reactions with heterodienes.5 These reactions lead to stereoselective synthesis of highly functionalized pyranyl heterocycles. Further elaboration of these cycloadducts provides a unique entry to C-aryl-glycosides and pyranyl structures that are common in other natural products (Scheme 1). [Pg.79]

The first microwave-assisted hetero-Diels-Alder cycloaddition reaction was described by Diaz-Ortiz and co-workers in 1998 between 2-azadiene 198 and the same electron-poor dienophiles as for the preparation of pyrazolo[3,4-b]pyridines 200 (Scheme 72) [127]. These dienes reacted with... [Pg.249]

Shao reported the microwave-assisted hetero-Diels-Alder cycloaddition reaction of a series of acetylenic pyrimidines to introduce a fused lactone/lactam ring, with no degradation of either reactants or products typical for the harsh thermal conditions (150-190°C, 15-144h) [131]. In contrast to the results reported when conventional heating was applied, the Diels-Alder cycloaddition under microwave irradiation gave a high yield of the desired fused lactones or lactams [132]. This reaction provided a practical and general method for the preparation of fused bicyclic pyridines 205 (Scheme 74). [Pg.250]

Cycloaddition reactions catalysed by transition metal complexes are an important tool in the construction of a wide range of carbo- and hetero-cyclic systems, such as benzene, pyridines, triazoles, etc. [7]. In general, these reactions are extremely atom-efficient and involve the formation of several C-C bonds in a single step. Among the innumerable possible catalytic systems for the cycloaddition reaction the NHC-metal complexes have received special attention [7c]. [Pg.134]

Another recent development in the field of palladium-catalyzed reactions with alkynes is a novel multicomponent approach devised by the Lee group. Starting from a-bromovinyl arenes and propargyl bromides, the assembly ofeight-membered car-bocycles can be realized via a cross-coupling/[4+4] cycloaddition reaction. The authors also presented the combination of a cross-coupling and homo [4+2], hetero [4+2], hetero [4+4] or [4+4+1] annulation leading to various cyclic products [147]. [Pg.411]

Ab initio Hartree-Fock and density functional theory (DFT) calculations were performed to study transition geometries in the intramolecular hetero-Diels-Alder cycloaddition reactions of azoalkenes 20 (LJ = CH2, NFI, O) (Equation 1). The order of the reactivities was predicted from frontier orbital energies. DFT calculations of the activation energies at the B3LYP level were in full agreement with the experimental results described in the literature <2001JST(535)165>. [Pg.261]

Inter- and intramolecular hetero-Diels-Alder cycloaddition reactions in a series of functionalized 2-(lH)-pyrazinones have been studied in detail by the groups of Van der Eycken and Kappe (Scheme 6.95) [195-197]. In the intramolecular series, cycloaddition of alkenyl-tethered 2-(lH)-pyrazinones required 1-2 days under conventional thermal conditions involving chlorobenzene as solvent under reflux conditions (132 °C). Switching to 1,2-dichloroethane doped with the ionic liquid l-butyl-3-methylimidazolium hexafluorophosphate (bmimPF6) and sealed-vessel microwave technology, the same transformations were completed within 8-18 min at a reaction temperature of 190 °C (Scheme 6.95 a) [195]. Without isolating the primary imidoyl chloride cycloadducts, rapid hydrolysis was achieved by the addition of small amounts of water and subjecting the reaction mixture to further microwave irradia-... [Pg.172]

Scheme 6.95 Hetero-Diels-Alder cycloaddition reactions of 2(1 H)-pyrazinones. Scheme 6.95 Hetero-Diels-Alder cycloaddition reactions of 2(1 H)-pyrazinones.
Moody and coworkers have employed a biomimetic hetero-Diels-Alder-aroma-tization sequence for the construction of the 2,3-dithiazolepyridine core unit in amythiamicin D and related thiopeptide antibiotics (Scheme 6.243 a) [426]. The key cycloaddition reaction between the azadiene and enamine components was carried out by microwave irradiation at 120 °C for 12 h and gave the required 2,3,6-tris(thi-azolyl)pyridine intermediate in a moderate 33% yield. Coupling of the remaining building blocks then completed the first total synthesis of the thiopeptide antibiotic... [Pg.258]

Diels-Alder reactions [31] and 1,3-dipolar cycloadditions [32, 33] have been performed by use of this methodology. For example, Diaz-Ortiz described the hetero-Diels-Alder and 1,3-dipolar cycloaddition reactions of ketene acetals. The reactions were improved and products were isolated directly from the crude reaction mixture without polymerization of the ketene acetals [34],... [Pg.299]

Methods for the synthesis of substituted pyridines remains an intense topic of research. One of the most popular approaches to substituted pyridines remains cycloaddition reactions. While this strategy is not new and many examples are in the current literature <00TL10251>, the state-of-the-art has been expanded. Weinreb and co-workers have reported the regioselective synthesis of pyridines (3) via intramolecular oximino malonate hetero Diels-Alder reactions (1 - 2) <00OL4007>. Similarly, the intramolecular [4 + 2] cycloaddition of... [Pg.238]


See other pages where Cycloaddition reactions, hetero- is mentioned: [Pg.873]    [Pg.151]    [Pg.212]    [Pg.246]    [Pg.215]    [Pg.250]    [Pg.252]    [Pg.351]    [Pg.426]    [Pg.10]    [Pg.340]    [Pg.244]   
See also in sourсe #XX -- [ Pg.42 , Pg.245 ]




SEARCH



Hetero cycloaddition

Hetero- cycloadditions

© 2024 chempedia.info