Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cycloaddition diene oxidation

Cycloadditions of thiocarbonyl compounds to dienes, or of vinyl thiocarbonyl derivatives to dienophiles, have received particular attention. Thus, A -dihydro-thiopyrans, e.g. (28), have been obtained by the addition of diphenyl thioketone to 1,3-dienes. Oxidation of (28), followed by a vinylogous Pummerer reaction, gave the 2i/-thiopyran (29). ... [Pg.236]

The cycloaddition reaction of 1,2,4-tiiazines 7V-oxides proceeds differently from the reaction of the corresponding 1,2,4-tiiazines. Thus the 1,2,4-triazine 4-oxide 55 acts only as a diene in the reaction with 1 -diethylaminopropyne to afford 2-methyl-4-(dimethylamino)pyrimidines 111. At the same time the 1,2,4-triazine 4-oxides 55 react with l-(dimethylamino)-l-ethoxyethylene by 1,3-dipolar cycloaddition to give 5-methyl-1,2,4-tiiazines 112 (78CB240). [Pg.288]

The validity of the model was demonstrated by reacting 35 under the same reaction conditions as expected, only one diastereoisomer 41 was formed, the structure of which was confirmed by X-ray analysis. When the vinylation was carried out on the isothiazolinone 42 followed by oxidation to 40, the dimeric compound 43 was obtained, showing that the endo-anti transition state is the preferred one. To confirm the result, the vinyl derivative 42 was oxidized and the intermediate 40 trapped in situ with N-phenylmaleimide. The reaction appeared to be completely diastereoselective and a single diastereomer endo-anti 44 was obtained. In addition, calculations modelling the reactivity of the dienes indicated that the stereochemistry of the cycloaddition may be altered by variation of the reaction solvent. [Pg.76]

Two attractive routes to thiolene oxide and dioxide are the diene-SO104 and diene-S02298 cycloadditions, respectively. These cycloadditions are highly stereoselective at both carbons of the diene systems and at sulfur (see equation 62 for specifics) which, in the case of sulfoxide formation, proceed via attack of triplet SO on the diene. Equation 112 shows an example of such a cycloaddition104. The overall yields are significantly improved by running the cycloadditions in the absence of oxygen and by the use of excess diene. [Pg.461]

Since sulfoxides and sulfones are versatile synthetic intermediates, and since in both the thiolene oxide and dioxides the reverse dethionylation114 ( — SO), and cheletropic extrusion of sulfur dioxide296, respectively, readily take place thermally, these cycloadditions are expected to find a useful place in organic synthesis. It should be kept in mind, however, that the retrograde SO-diene reaction and interconversion of the thiolene oxides compete effectively against SO extrusion on heating, and that diene isomerization accompanies the forward reaction (SO + diene). [Pg.462]

In a more recent and improved approach to cyclopropa-radicicol (228) [ 110], also outlined in Scheme 48, the synthesis was achieved via ynolide 231 which was transformed to the stable cobalt complex 232. RCM of 232 mediated by catalyst C led to cyclization product 233 as a 2 1 mixture of isomers in 57% yield. Oxidative removal of cobalt from this mixture followed by cycloaddition of the resulting cycloalkyne 234 with the cyclic diene 235 led to the benzofused macrolactone 236, which was converted to cyclopropa-radicicol (228). [Pg.314]

A one-pot procedure [9] based on the cycloaddition of 4-aryl-2-silyloxybuta-dienes 7 and bisdiene 8 with alkynes, followed by oxidative aromatization of the cycloadducts, opened a route to polycyclic phenols without isolating the cyclo-hexadiene derivative intermediates (Scheme 2.5). [Pg.32]

Luche and coworkers [34] investigated the mechanistic aspects of Diels-Alder reactions of anthracene with either 1,4-benzoquinone or maleic anhydride. The cycloaddition of anthracene with maleic anhydride in DCM is slow under US irradiation in the presence or absence of 5% tris (p-bromophenyl) aminium hexachloroantimonate (the classical Bauld monoelectronic oxidant, TBPA), whereas the Diels Alder reaction of 1,4-benzoquinone with anthracene in DCM under US irradiation at 80 °C is slow in the absence of 5 % TBPA but proceeds very quickly and with high yield at 25 °C in the presence of TBPA. This last cycloaddition is also strongly accelerated when carried out under stirring solely at 0°C with 1% FeCh. The US-promoted Diels Alder reaction in the presence of TBPA has been justified by hypothesizing a mechanism via radical-cation of diene, which is operative if the electronic affinity of dienophile is not too weak. [Pg.157]

Diels-Alder reaction of the furan derivative 148 with homochiral bicyclic enone 149 is the key step [56] in the total synthesis of the diterpenes jatropho-lone A and B, 151 and 152, respectively, isolated from Jatropha gossypiifolia L [57], Initial efforts to carry out the cycloaddition between 148 and 149 under thermal or Lewis-acid conditions failed due to diene instability. Application of 5kbar of pressure to a neat 1 1 mixture of diene and dienophile afforded crystalline 150 with the desired regiochemistry (Scheme 5.23). Subsequent aromatization, introduction of the methylene group, oxidation and methylation afforded (-l-)-jatropholones 151 and 152. [Pg.232]

N-Acylnitroso compounds 4 are generated in situ by periodate oxidation of hydroxamic acids 3 and react with 1,3-dienes (e.g. butadiene) to give 1,2-oxazines 5 (Scheme 6.3). The periodate oxidation of 4-O-protected homo-chiral hydroxamic acid 6 occurs in water in heterogeneous phase at 0°C, and the N-acylnitroso compound 7 that is generated immediately cyclizes to cis and tranx-l,2-oxazinolactams (Scheme 6.4) [17a, b]. When the cycloaddition is carried out in CHCI3 solution, the reaction is poorly diastereo-selective. In water, a considerable enhancement in favor of the trans adduct is observed. [Pg.257]

The homoallylation product 16a presumably stems from oxidative cycloaddition of a Ni(0) species across the diene and aldehyde moieties of 15, leading to an oxanickellacycle intermediate 17 (path A, Scheme 5), which undergoes 0-bond metathesis with triethylsilane giving rise to a o-allylnickel 19. On the other hand, formation of 16b may start with addition of a Ni - H species upon the diene followed by intramolecular nucleophilic allylation as described in Eqs. 4-6 (path B). Alternatively, allylic transposition of the NiH group providing 20 from 19 may be related to the formation of 16b. The different reactivity between cyclohexadiene and many other acyclic dienes is also observed for the reaction undertaken under typical homoallylation conditions (see Scheme 14). [Pg.188]

Nitro compounds have been converted into various cyclic compounds via cycloaddition reactions. In particular, nitroalkenes have proved to be useful in Diels-Alder reactions. Under thermal conditions, they behave as electron-deficient alkenes and react with dienes to yield 3-nitrocy-clohexenes. Nitroalkenes can also act as heterodienes and react with olefins in the presence of Lewis acids to yield cyclic alkyl nitronates, which undergo [3+2] cycloaddition. Nitro compounds are precursors for nitrile oxides, alkyl nitronates, and trialkylsilyl nitronates, which undergo [3+2]cycloaddition reactions. Thus, nitro compounds play important roles in the chemistry of cycloaddition reactions. In this chapter, recent developments of cycloaddition chemistry of nitro compounds and their derivatives are summarized. [Pg.231]

The P-nitroso phosphine oxide 406 behaves as an N-O heterodienophile and reacts with the 1,3-diene part of the molecule in a cycloaddition reaction to form the 2,4 ,5,6,7,8-hexahydro-8-phenyl-[l,2]azaphosphorino[l,6-3][l,2]oxa-zine 8-oxide 407 containing an stereogenic cyclic phosphorus atom (Scheme 64). 31P NMR spectroscopy shows one single peak indicating the formation of only one diastereomer <2002JOG6174>. [Pg.315]


See other pages where Cycloaddition diene oxidation is mentioned: [Pg.357]    [Pg.70]    [Pg.32]    [Pg.114]    [Pg.335]    [Pg.157]    [Pg.160]    [Pg.238]    [Pg.265]    [Pg.35]    [Pg.91]    [Pg.91]    [Pg.163]    [Pg.344]    [Pg.274]    [Pg.459]    [Pg.129]    [Pg.346]    [Pg.352]    [Pg.36]    [Pg.80]    [Pg.274]    [Pg.429]    [Pg.459]    [Pg.276]    [Pg.161]    [Pg.529]   
See also in sourсe #XX -- [ Pg.861 ]

See also in sourсe #XX -- [ Pg.861 ]

See also in sourсe #XX -- [ Pg.861 ]




SEARCH



Cycloaddition oxide

Cycloadditions oxidative

Diene Cycloaddition

Dienes 3-1-4 cycloadditions

Dienes cycloaddition

Dienes, oxidation

Oxidative cycloaddition

© 2024 chempedia.info