Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclization reactions radical anions

In this analysis, the activation barrier for both C1-C6 and C1-C5 cyclizations of enediyne radical-anions can be described as the avoided crossing between the out-of-plane and in-plane MOs (configurations). One-electron reduction populates the out-of-plane LUMO of the enediyne moiety. At the TS (the crossing), the electron is transferred between the orthogonal re-systems to the new (in-plane) LUMO. This effect leads to the accelerated cyclization of radical-anions of benzannelated enediynes, a large sensitivity of this reaction to re-conjugative effects of remote substituents and the fact that this selectivity is inverse compared to that of the Bergman cyclization. Similar electronic effects should apply to the other reductive cyclization reactions that were mentioned in the introduction. [Pg.25]

The electrolysis of adamantylideneadamantane solutions affords the radical cation, which can add molecular (triplet) oxygen to give the peroxide radical anion, which can react with adamantylideneadamantane to give the 1,4-diradical and another molecule of adamantylideneadamantane radical cation. The latter reacts with oxygen, to continue the chain of the reaction, while the former cyclizes to the corresponding 1,2-dioxetane (Scheme 18) (81JA2098). [Pg.40]

Many anodic oxidations involve an ECE pathway. For example, the neurotransmitter epinephrine can be oxidized to its quinone, which proceeds via cyclization to leukoadrenochrome. The latter can rapidly undergo electron transfer to form adrenochrome (5). The electrochemical oxidation of aniline is another classical example of an ECE pathway (6). The cation radical thus formed rapidly undergoes a dimerization reaction to yield an easily oxidized p-aminodiphenylamine product. Another example (of industrial relevance) is the reductive coupling of activated olefins to yield a radical anion, which reacts with the parent olefin to give a reducible dimer (7). If the chemical step is very fast (in comparison to the electron-transfer process), the system will behave as an EE mechanism (of two successive charge-transfer steps). Table 2-1 summarizes common electrochemical mechanisms involving coupled chemical reactions. Powerful cyclic voltammetric computational simulators, exploring the behavior of virtually any user-specific mechanism, have... [Pg.35]

Novi and coworkers124 have shown that the reaction of 2,3-bis(phenylsulfonyl)-l,4-dimethylbenzene with sodium benzenethiolate in dimethyl sulfoxide yields a mixture of substitution, cyclization and reduction products when subjected at room temperature to photostimulation by a sunlamp. These authors proposed a double chain mechanism (Scheme 17) to explain the observed products. This mechanism is supported by a set of carefully designed experiments125. The addition of PhSH, a good hydrogen atom donor, increases the percent of reduction products. When the substitution process can effectively compete with the two other processes, the increase in the relative yield of substitution (e.g., with five molar equivalents of benzenethiolate) parallels the decrease in those of both cyclization and reduction products. This suggests a common intermediate leading to the three different products. This intermediate could either be the radical anion formed by electron transfer to 2,3-bis(phenylsulfonyl)-l,4-dimethylbenzene or the a radical formed... [Pg.1072]

The reaction of the unsaturated aldehyde 32 with cat. Cp2 VCl2/Me3SiCl/ Zn is conducted in THF to afford the cyclic alcohol 33 with excellent dia-stereoselectivity (Scheme 19) [21]. The transformation may be explained by 5-exo-cyclization of the corresponding radical anion, followed by chlorination. [Pg.76]

There are also some rare domino sequences where two anionic and two radical reactions are combined (Scheme 2.152) [347]. According to a report of the Wang group, thionyl chloride is able to promote a succession of reactions by an initial formation of a chlorosulfite 2-673 of the tertiary alcohol 2-672, followed by an SN-type reaction to produce the chloroallene 2-674. A Schmittel cyclization reaction [348] then generates... [Pg.151]

The sonochemistry of the other alkali metals is less explored. The use of ultrasound to produce colloidal Na has early origins and was found to greatly facilitate the production of the radical anion salt of 5,6-benzo-quinoline (225) and to give higher yields with greater control in the synthesis of phenylsodium (226). In addition, the use of an ultrasonic cleaning bath to promote the formation of other aromatic radical anions from chunk Na in undried solvents has been reported (227). Luche has recently studied the ultrasonic dispersion of potassium in toluene or xylene and its use for the cyclization of a, o-difunctionalized alkanes and for other reactions (228). [Pg.107]

Fig. 19 The reaction energy profiles for thermal (on the left) and radical-anionic (on the right) C1-C6 and C1-C5 cyclizations of the parent enediyne computed at the B3LYP/ 6-31G level. Fig. 19 The reaction energy profiles for thermal (on the left) and radical-anionic (on the right) C1-C6 and C1-C5 cyclizations of the parent enediyne computed at the B3LYP/ 6-31G level.
The starting points for both C1-C5 and C1-C6 cyclizations are characterized using C1-C6 distances to stress that starting point for both cyclizations is the same enediyne radical-anion. However, for transition states and products of C1-C5 and C1-C6 cyclizations, the respective incipient bond length (C1-C5 or C1-C6) was used as the reaction coordinate... [Pg.33]

This has been applied to the cyclization of dihalides [45, 46], nonconjugated, unsaturated ketones [47] and esters [48], oxoalkylpyridinium salts [49], aldehydes and unsaturated nitriles [50], halides, and unsaturated esters [51], The umpoled acceptors, mostly radical anions or carban-ions (see Scheme 1), can also be used in intermolecular reactions such as acylation, alkylation, or carboxylation (Eq. 5). [Pg.80]

The anion radical species formed by the electroreduction of aliphatic esters show interesting reactivities, and the reduction of olefinic esters gives bicyclic products with high regio- and stereoselectivity. The electroreduction of the ester in the presence of chlorotrimethylsilane affords a tricyclic product (Scheme 21) [35, 40]. The mechanism of this cyclization reaction seems to be the addition of anion radical species, formed by the reduction of the ester group, to the carbon-carbon double bond. [Pg.207]

Like the electrohydrodimerization and electrohydrocyclizahon reactions, this process also requires the consumphon of two electrons and two protons. It has been shown to occur via a sequence consisting of electron transfer followed by a ratedetermining protonation of the resulting radical anion, addihon of a second electron to generate a carbanion, cyclization of the carbanion onto the carbonyl acceptor unit and the addition of the second proton [16]. Carbon acids like dimethyl malonate and malononitrile are often used as a proton source. The course of this and other... [Pg.317]

The mechanism of the electroreductive cyclization reaction has been studied in some detail [22], The initial thought was that it occurred via the cyclization of the radical anion derived, for example, from 25 in the first reduction step. A moment s reflection, however, reveals that there are many more mechanistically viable pathways, especially when one realizes that the transformation involves five steps - two electron transfers (symbolized below by e and d , the latter corresponding to a homogeneous process), two protonations ( p ), and cyclization ( c ). In principle, these could occur in any order, and with any one of the steps being rate-determining. [Pg.9]

In a related study, the oxidation-reduction sequence was carried out in the presence of an olefin (Scheme 21). Two products were formed. The major product resulted from the net reduction of the carboxylic acid to an aldehyde. The minor product resulted from trapping of the radical anion intermediate generated from the reduction reaction by the olefin. It should be noted that, in the absence of a trapping group, the acid can be selectively reduced to the aldehyde without any over-reduction. Although not in the scope of this review, this is a very useful transformation in its own right [35]. At this time, the yields of the cyclized products from the cyclization reaction of the radical anion with the olefin remain low. [Pg.65]

Cyclization Reactions Involving Radical Cations and Radical Anions... [Pg.77]

Whereas the design and application of free radical cyclization reactions have been extensively covered in excellent reviews [3-5], there is no comprehensive report on the synthetic application of their charged counterparts radical cations and radical anions. [Pg.78]

The previous chapter covered radical cation cyclization reactions that were a consequence of single-electron oxidation. In the following section, radical anion cyclization reactions arising from single-electron reduction will be discussed. In contrast to the well documented cyclization reactions via carbon-centered free radicals [3, 4], the use of radical anions has received limited attention. There are only a few examples in the literature of intramolecular reductive cyclization reactions via radical anions other than ketyl. Photochemi-cally, electrochemically or chemically generated ketyl radical anions tethered to a multiple bond at a suitable distance, have been recognized as a promising entry for the formation of carbon-carbon bonds. [Pg.101]

The electroreductive cyclization reaction of 6-heptene-2-one 166, producing CIS-1,2-dimethylcyclopentanol 169, was discovered more than twenty years ago [166]. In agreement with Baldwin s rules, the 5-exo product is obtained in a good yield. Since that time, the mechanism of this remarkable regio- and stereoselective reaction has been elucidated by Kariv-Miller et al. [167-169]. Reversible cyclization of the initially formed ketyl radical anion 167 provides either the cis or the trans distonic radical anion. Subsequent electron transfer and protonation from the kinetically preferred 168 leads to the major cis product 169. The thermodynamically preferred 170 is considered as a source of the trace amounts of the trans by-product 171 (Scheme 32). [Pg.101]

A series of bicyclo[3.3.0]octanols are accessible by electroreductive tandem cyclization of linear allyl pentenyl ketones 189, as shown by Kariv-Miller et al. [189]. The electrolyses are carried out with an Hg-pool cathode and a Pt-flag anode. As electrolyte, tetrabutylammonium tetrafluororborate is used. The reaction is stereoselective, yielding only two isomers 192 and 193. In a competing reaction, a small amount of the monocyclic alcohol is formed. Since all the monocycles have the 1-allyl and the 2-methyl group in trans geometry it is assumed that this terminates the reaction. The formation of a bicyclic product requires that the first cyclization provides the cis radical anion which leads to cis-ring juncture [190] (Scheme 37). [Pg.104]

Recently it has been shown that radical anionic cyclization of olefinic enones effectively compete with intramolecular [2 -I- 2]-cycloaddition to form spirocy-clic compounds [205, 206], 3-Alkenyloxy- and 3-alkenyl-2-cyclohexenones 235 are irradiated in the presence of triethylamine. As depicted in Scheme 46 two reaction pathways may operate. Both involve electron transfer steps, either to the starting material (resulting in a direct cyclization) or to the preformed cyclobutane derivative 239, which undergoes reductive cleavage. The second... [Pg.108]

The photolysis of donor-acceptor systems shows a reaction pattern of unique synthetic value. Direct irradiation of the donor-acceptor pairs, such as arene-amine, leads by intramolecular electron transfer, to amine radical cations and arene radical anions. The generated radical cation and radical anion intermediates undergo cyclization reactions providing efficient synthetic routes to N-heterocycles with a variety of ring sizes. [Pg.112]

This section is devoted to cyclizations and cycloadditions of ion-radicals. It is common knowledge that cyclization is an intramolecular reaction in which one new bond is generated. Cycloaddition consists of the generation of two new bonds and can proceed either intra- or intermolecularly. For instance, the transformation of 1,5-hexadiene cation-radical into 1,4-cyclohexadienyl cation-radical (Guo et al. 1988) is a cyclization reaction, whereas Diels-Alder reaction is a cycloaddition reaction. In line with the consideration within this book, ring closure reactions are divided according to their cation- or anion-radical mechanisms. [Pg.362]

In qualitative terms, the rearrangement reaction is considerably more efficient for the oxime acetate 107b than for the oxime ether 107a. As a result, the photochemical reactivity of the oxime acetates 109 and 110 was probed. Irradiation of 109 for 3 hr, under the same conditions used for 107, affords the cyclopropane 111 (25%) as a 1 2 mixture of Z.E isomers. Likewise, DCA-sensitized irradiation of 110 for 1 hr yields the cyclopropane derivative 112 (16%) and the dihydroisoxazole 113 (18%). It is unclear at this point how 113 arises in the SET-sensitized reaction of 110. However, this cyclization process is similar to that observed in our studies of the DCA-sensitized reaction of the 7,8-unsaturated oximes 114, which affords the 5,6-dihydro-4//-l,2-oxazines 115 [68]. A possible mechanism to justify the formation of 113 could involve intramolecular electrophilic addition to the alkene unit in 116 of the oxygen from the oxime localized radical-cation, followed by transfer of an acyl cation to any of the radical-anions present in the reaction medium. [Pg.29]

Triethylamine as the electron donor was also used by Mattay and co-workers in tandem fragmentation cyclization reactions of a-cyclopropylketones. The initial electron transfer on the ketone moiety is followed by the fast cyclopropyl-carbinyl-homoallyl rearrangement, yielding a distonic radical anion. With an appropriate unsaturated side chain within the molecule both annealated and spi-rocyclic ring systems are accessable in moderate yields (Scheme 41) [62]. [Pg.209]

The intramolecular reaction of activated alkenes of the type 8 leads to the formation of 5- or 6-membered rings [26] and has been carried out only at a mercury cathode in a divided cell. In these processes, the activated alkene radical-anion is formed at a less negative potential than that required for cleavage of the carbon-bromine bond. Cyclization then occurs by nucleophilic substitution. [Pg.58]


See other pages where Cyclization reactions radical anions is mentioned: [Pg.174]    [Pg.791]    [Pg.831]    [Pg.107]    [Pg.320]    [Pg.206]    [Pg.31]    [Pg.835]    [Pg.5]    [Pg.258]    [Pg.4]    [Pg.78]    [Pg.78]    [Pg.79]    [Pg.80]    [Pg.105]    [Pg.107]    [Pg.109]    [Pg.110]    [Pg.117]    [Pg.118]    [Pg.103]   
See also in sourсe #XX -- [ Pg.7 ]




SEARCH



Cyclization radical anion

Cyclization reactions

Cyclization reactions anionic

Radical cyclization

Radical reaction cyclization

© 2024 chempedia.info