Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Radical cyclization stereochemistry

Three main sources of information are available for solving the ET versus 8 2 problem, namely, comparative kinetic studies, stereochemistry and cyclizable radical-probe experiments. [Pg.98]

Wawzonek et al. first investigated the mechanism of the cyclization of A-haloamines and correctly proposed the free radical chain reaction pathway that was substantiated by experimental data. "" Subsequently, Corey and Hertler examined the stereochemistry, hydrogen isotope effect, initiation, catalysis, intermediates, and selectivity of hydrogen transfer. Their results pointed conclusively to a free radical chain mechanism involving intramolecular hydrogen transfer as one of the propagation steps. Accordingly, the... [Pg.89]

Vinyl radicals can also participate in 6-exo cyclizations. In pioneering work, Stork and his group at Columbia University showed that stereoisomeric vinyl bromides 20 and 21 (see Scheme 3) can be converted to cyclohexene 22.7 The significance of this finding is twofold first, the stereochemistry of the vinyl bromide is inconsequential since both stereoisomers converge upon the same product and second, the radical cyclization process tolerates electrophilic methoxycarbonyl groups. The observation that the stereochemistry of the vinyl bromide is inconsequential is not surprising because the barrier for inversion of most vinyl radicals is very low.8 This important feature of vinyl radical cyclization chemistry is also exemplified in the conversion of vinyl bromide 23 to tricycle 24, the key step in Stork s synthesis of norseychellanone (25) (see Scheme 4).9 As in... [Pg.385]

It is important to note here that both of the 5-exo radical cyclizations (133—>132—>131, Scheme 27) must proceed in a cis fashion the transition state leading to a strained mms-fused bicy-clo[3.3.0]octane does not permit efficient overlap between the singly occupied molecular orbital (SOMO) of the radical and the lowest unoccupied molecular orbital (LUMO) of the alkene. The relative orientation of the two side chains in the monocyclic radical precursor 134 is thus very significant because it dictates the relationship between the two outer rings (i. e. syn or anti) in the tricyclic product. The cis-anti-cis ring fusion stereochemistry of hirsutene would arise naturally from a cyclization precursor with trans-disposed side chain appendages (see 134). [Pg.409]

In a rare study of a radical cyclization of fragmentation-derived alkene radical cations, it was discovered that the stereochemistry of the precursor can have significant consequences on the outcome of the reaction. Thus, a gluco-... [Pg.30]

Addition of P—H bonds to unsaturated systems also continues to be used as a route to heterocyclic systems. Thus base-catalysed cyclization of the phosphine (32) [prepared by the addition of methyl methacrylate (2 moles) to phenylphosphine], followed by subsequent hydrolysis and decarboxylation, affords the phosphorinanone (33). The phosphorinanone system is also directly accessible by the addition of phenylphosphine to divinyl ketones.28 The radical-initiated addition of phenylphosphine to dialkynyl systems (34) gives the heterocyclohexadienes (35).29 80 The stereochemistry of the addition of phenylphosphine to cyclo-octa-2,7-dienone to give... [Pg.5]

Photoinduced electron transfer promoted cyclization reactions of a-silyl-methyl amines have been described by two groups. The group of Pandey cyclized amines of type 135 obtaining pyrrolidines and piperidines 139 in high yields [148]. The cyclization of the a-silylated amine 140 leads to a 1 1 mixture of the isomers 141 and 142 [149]. The absence of diastereoselectivity in comparison to analogous 3-substituted-5-hexenyl radical carbocyclization stereochemistry [9] supports the notion that a reaction pathway via a free radical is unlikely in this photocyclization. The proposed mechanism involves delocalized a-silylmethyl amine radical cations as reactive intermediates. For stereochemical purposes, Pandey has investigated the cyclization reaction of 143, yielding... [Pg.97]

Scheme 19)." Homoallyloxysilanes gave a mixture of five- and six-membered rings, but the intermediate silyl radical underwent predominantly 6-endo cyclization. Pentenyloxysilane gave the 1-endo product only. The stereochemistry of these reactions was found to be determined by steric effects, even in the presence of chiral thiol catalysts. The structures of the radical intermediates were studied by EPR. [Pg.127]

By using either one of these photosystems, one-electron (3-activation of a,(3-unsaturated carbonyl compounds produced carbon-centered radical precursors which cyclize efficiently and stereoselectively to tethered activated olefins or carbonyl groups. The 1,2-anti-stereochemistry observed contrasts with the general trend of syn-stereochemistry expected in 5-hexenyl radical cyclizations. Application of this methodology was successfully demonstrated by the stereoselective synthesis of optically pure C-furanoside, starting from L-tartaric acid (Scheme 38) [57,58]. [Pg.207]

Diethyl malonate has been proposed for use as a proton source in these cyclization reactions [124], It is not a sufficiently strong acid to protonate the radical-anion rapidly. However it irreversibly protonates the enol intermediate generated after carbon-caibon bond formation. In one case, control of stereochemistry in favour of the traHS-sunstituted five membered ring 39 was achieved by the addition of cerium(Ill) ions [124],... [Pg.76]

A. Kittaka, T. Asakura, T. Kuze, H. Tanaka, N. Yamada, K. T. Nakamura, and T. Miyasaka, Cyclization reactions of nucleoside anomeric radical with olefin tethered on base Factors that induce anomeric stereochemistry,/. Org. Chem., 64 (1999) 7081-7093. [Pg.184]

T. V. RajanBabu, Stereochemistry of intramolecular free-radical cyclization reactions, Acc. Chem. Res. 24 139 (1991). [Pg.565]

Each of the syntheses of seychellene summarized in Scheme 20 illustrates one of the two important methods for generating vinyl radicals. In the more common method, the cyclization of vinyl bromide (34) provides tricycle (35).93 Because of the strength of sjp- bonds to carbon, the only generally useful precursors of vinyl radicals in this standard tin hydride approach are bromides and iodides. Most vinyl radicals invert rapidly, and therefore the stereochemistry of the radical precursor is not important. The second method, illustrated by the conversion of (36) to (37),94 generates vinyl radicals by the addition of the tin radical to an alkyne.95-98 The overall transformation is a hydrostannylation, but a radical cyclization occurs between the addition of the stannyl radical and the hydrogen transfer. Concentration may be important in these reactions because direct hydrostannylation of die alkyne can compete with cyclization. Stork has demonstrated that the reversibility of the stannyl radical addition step confers great power on this method.93 For example, in the conversion of (38) to (39), the stannyl radical probably adds reversibly to all of the multiple bond sites. However, the radicals that are produced by additions to the alkene, or to the internal carbon of the alkyne, have no favorable cyclization pathways. Thus, all the product (39) derives from addition to the terminal alkyne carbon. Even when cyclic products might be derived from addition to the alkene, followed by cyclization to the alkyne, they often are not found because 0-stannyl alkyl radicals revert to alkenes so rapidly that they do not close. [Pg.796]

AIBN, (67) forms in high yield because the initial radical abstracts the hydrogen a to the carbonyl (with concomitant elimination of BusSn) more rapidly than it cyclizes. However, blocking this pathway results in smooth ring expansion, as illustrated by the conversion of (66) to (68). The alkene stereochemistry is dictated by the configuration of the precursor (see Scheme 49). [Pg.823]


See other pages where Radical cyclization stereochemistry is mentioned: [Pg.983]    [Pg.434]    [Pg.139]    [Pg.426]    [Pg.5097]    [Pg.608]    [Pg.146]    [Pg.386]    [Pg.783]    [Pg.801]    [Pg.145]    [Pg.307]    [Pg.974]    [Pg.267]    [Pg.1]    [Pg.128]    [Pg.82]    [Pg.57]    [Pg.108]    [Pg.85]    [Pg.57]    [Pg.63]    [Pg.79]    [Pg.5]    [Pg.44]    [Pg.547]    [Pg.548]    [Pg.787]    [Pg.791]    [Pg.792]    [Pg.799]    [Pg.823]    [Pg.824]   
See also in sourсe #XX -- [ Pg.1226 ]




SEARCH



Cyclization stereochemistry

Cyclizations stereochemistry

Free radical cyclization stereochemistry

Radical cyclization

Radicals stereochemistry

© 2024 chempedia.info