Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclization chemoselective

The initially formed titanium enolate 80 adds, in a diastereoselective fashion, to the electrophilic center of the activated oxime. The generated adduct 81 cyclizes chemoselectively to afford the desired /f-azetine, which is converted, with retention of configuration, to the corresponding /3-amino carbonyl compounds 82 via 3V-acetylation followed by hydrolysis. [Pg.420]

Palladium catalyzed cycloisomerizations of 6-cn-l-ynes lead most readily to five-membered rings. Palladium binds exclusively to terminal C = C triple bonds in the presence of internal ones and induces cyclizations with high chemoselectivity. Synthetically useful bis-exocyclic 1,3-dienes have been obtained in high yields, which can, for example, be applied in Diels-Alder reactions (B.M. Trost, 1989). [Pg.84]

The field of alkaloid synthesis via tandem cyclizations favors the application of (TMSlsSiH over other radical-based reagents, due to its very low toxicity and high chemoselectivity. For example, cyclization of the iodoarylazide 102, mediated by (TMSlsSiH under standard experimental conditions, produced the N-Si(TMS)3 protected alkaloid 103 that after washing with dilute acid afforded the amine 104 in an overall 83% yield from 102 (Reaction 81). ° The formation of the labile N-Si(TMS)3 bond was thought to arise from the reaction of the product amine 104 with the by-product (TMSlsSil. The skeletons of ( )-horsfiline, ( )-aspidospermidine and (+ )-vindoline have been achieved by this route. - ... [Pg.156]

In another route employing alkynes, it was found that heating propargyl azadienes 7 in toluene at 25-60 °C produces pyrrolic imines 8 which hydrolyze upon work-up to afford 3-acylpyrroles 9 <96JOC2185>. This exo-dig cyclization occurs with complete chemoselectivity wherein the more substituted nitrogen is involved in the cyclization. [Pg.98]

The reductive coupling/silylation reaction was extended to more complicated polyenes, such as the triene-substituted cyclopentanol 73, which cyclizes to provide 74 with a 72% yield and 6 1 dr after oxidation (Eq. 10) [44], The reaction is chemoselective the initial insertion occurs into the allyl substituent, which then inserts into the less hindered of the two remaining olefins, leaving the most hindered alkene unreacted. [Pg.232]

Alternatively, Ballini devised a new strategy to synthesize tri-alkylated pyrroles from 2,5-dialkylfurans and nitroalkanes <00SL391>. This method involves initial oxidation of 2,5-dimethylfuran with magnesium monoperoxyphthalate to cA-3-hexen-2,5-dione (6). Conjugate addition of the nitronate anion derived from the nitro compound 7 to 6 followed by chemoselective hydrogenation of the C-C double bond of the resulting enones 8 (obtained by elimination of nitrous acid from the Michael adduct) completes the conversion to the alkylated y-diketones 9. Final cyclization to pyrroles 10 featured improved Paal-Knorr reaction conditions involving reaction of the diketones with primary amines in a bed of basic alumina in the absence of solvent. [Pg.112]

Palladium-catalyzed cyclization of alkenes and alkynes were reported by Balme and co-workers.143 144 Intramolecular carbopalladation occurs to give polycyclic compounds. It has been shown that the nucleophile type has a large influence on the cyclization process. Both 5-exo- and 6-endo-cyclization are observed for substrates with nitrile (116 and 118) and ester (120, 122, and 124) substituents, respectively (Scheme 36). When a mixed nucleophile (CN and C02Me) is used, a mixture of 5-exo and 6-endo products is obtained. The chemoselectivity is controlled by the size of the nucleophile used. The stereochemistry of the initial double bond plays an important role on the stereoselectivity of the cyclization. (Z)-olefins (118 and 120) and (/. )-olefins (116 and 124) afford as- (119 and 121) and trans-cyclization products (117 and 123), respectively. [Pg.316]

Garbay reported the chemoselective reduction of a a-dehydrophenylala-nine substrate bearing a p-acrylate moiety [105]. Robinson et al. have also used a tandem, one-pot asymmetric hydrogenation-hydroformylation-cyclization approach to generate six- to eight-membered cyclic a-amino acids [136]. [Pg.800]

The same starting material can also be employed to synthesize the antipode (i )-methanophenazine [(i )-lOj, as R)-3l may easily be transformed into lactone (S)-30 by chemoselective reduction of the ester functionality [43] and subsequent cyclization. [Pg.90]

The total synthesis of the carbazomycins emphasizes the utility of the iron-mediated synthesis for the construction of highly substituted carbazole derivatives. The reaction of the complex salts 6a and 6b with the arylamine 20 leads to the iron complexes 21, which prior to oxidative cyclization have to be protected by chemoselective 0-acetylation to 22 (Scheme 13). Oxidation with very active manganese dioxide followed by ester cleavage provides carbazomycin B 23a [93] and carbazomycin C 23b [94]. The regioselectivity of the cyclization of complex 22b to a 6-methoxycarbazole is rationalized by previous results from deuterium labeling studies [87] and the regiodirecting effect of the 2-methoxy substituent of the intermediate tricarbonyliron-coordinated cyclo-hexadienylium ion [79c, 79d]. Starting from the appropriate arylamine, the same sequence of reactions has been applied to the total synthesis of carbazomycin E (carbazomycinal) [95]. [Pg.125]

For the quinone imine cyclization of iron complexes to carbazoles the arylamine is chemoselectively oxidized to a quinone imine before the cyclodehydrogenation [99]. The basic strategy of this approach is demonstrated for the total synthesis of the 3-oxygenated tricyclic carbazole alkaloids 4-deoxycarbazomycin B, hyellazole, carazostatin, and 0-methylcarazostatin (Scheme 17). [Pg.128]

The chemoselective addition of silyl radical to the double bond of the (3-alkenyloxyenone derivative 24 was instead planned in Reaction (7.29) and accompanied by a 5-exo-trig radical cyclization leading to the diastereomeric cyclic ether products [40]. [Pg.156]

Electrophilic substitution at the arylamine 709 using the complex salt 602, provided the iron complex 725 quantitatively. Sequential, highly chemoselective oxidation of the iron complex 725 with two, differently activated, manganese dioxide reagents provided the tricarbonyliron-complexed 4b,8a-dihydrocarbazol-3-one (727) via the non-cyclized quinone imine 726. Demetalation of the tricarbonyliron-complexed 4b,8a-dihydrocarbazol-3-one (727), followed by selective O-methylation, provided hyellazole (245) (599,600) (Scheme 5.70). [Pg.236]

Chatani s proposed mechanism bears some similarity to that of Jun s reaction (Scheme 9.12). They both begin with hydroamination of the C=C 7t-bond of a rhodium vinylidene. The resultant aminocarbene complexes (71 and 62) are each in equilibrium with two tautomers. The conversion of 71 to imidoyl-alkyne complex 74 involves an intramolecular olefin hydroalkynylation. Intramolecular syn-carbome-tallation of intermediate 74 is thought to be responsible for ring closure and the apparent stereospecificity of the overall reaction. In the light of the complexity of Chatani and coworkers mechanism, the levels of chemoselectivity that they achieved should be considered remarkable. For example, 5 -endo-cyclization of intermediate 72 was not observed, though it has been for more stabilized rhodium aminocarbenes bearing pendant olefins [27]. [Pg.296]

In the reactions of 4-amino-l-azadienes 295 with esters of glyoxylic acid, chemoselective cyclization occurred with displacement of the amino group NHR, and 2/7-1,3-oxazine-2-carboxylic acid derivatives 296 were formed in high yields instead of the corresponding 1,2-dihydropyrimidines usually obtained in the reactions of 295 with aliphatic or aromatic aldehydes (Equation 28) <1996T3095>. [Pg.413]

Any mechanism for this cyclization must embrace certain considerations. Since these cyclizations can be both diastereoselective and chemoselective, initial complexation with a C-H bond must be reversible, allowing sampling of several C-H bonds to precede the commitment to a... [Pg.1139]


See other pages where Cyclization chemoselective is mentioned: [Pg.195]    [Pg.195]    [Pg.173]    [Pg.438]    [Pg.386]    [Pg.108]    [Pg.317]    [Pg.379]    [Pg.449]    [Pg.514]    [Pg.527]    [Pg.571]    [Pg.809]    [Pg.288]    [Pg.74]    [Pg.31]    [Pg.89]    [Pg.222]    [Pg.230]    [Pg.240]    [Pg.245]    [Pg.235]    [Pg.247]    [Pg.106]    [Pg.178]    [Pg.106]    [Pg.129]    [Pg.219]    [Pg.221]    [Pg.241]    [Pg.450]    [Pg.73]    [Pg.318]    [Pg.424]   
See also in sourсe #XX -- [ Pg.373 ]




SEARCH



Chemoselective

Chemoselectivity

Chemoselectivity cyclization

Chemoselectivity cyclization

© 2024 chempedia.info