Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cuticle Cuticular lipids

The eggs of B. germanica contain the same types of hydrocarbons as the hemolymph, HDLp, and cuticle of the adult female. Only 150 pg of hydrocarbons accumulate on the epicuticular surface whereas up to 450 pg accumulate within the female during the period of egg maturation (Fan et al., 2002). The internal hydrocarbons are divided primarily between the ovaries, fat body, and 150 pg of HDLp-bound hydrocarbons in the hemolymph. During oocyte maturation ovarian hydrocarbons increase by more than 65-fold - from 3.5 pg on day-1 to 232 pg on day-8 (Fan et al., 2002). However, after oviposition on day-9, ovarian hydrocarbons decline to only 8.2 pg, demonstrating that hydrocarbons were associated with the ovulated oocytes. Radiotracing results indicate that they serve as components of the cuticular lipids of the embryos and first instars (Fan and Schal, unpublished results). [Pg.308]

Consideration of the waterproofing function of cuticular lipids first requires an assessment of cuticular transpiration relative to the overall water budget. The fact that organismal water-loss rates increase greatly when surface lipids are removed does not necessarily mean that increased cuticular permeability is responsible. Insects can lose water by transpiration through the cuticle, by evaporation from the tracheal system through open spiracles, and by... [Pg.100]

The external cuticle of insects is covered by a waxy layer composed of mixtures of hydro-phobic lipids that include long-chain alkanes, alkenes, wax esters, fatty acids, alcohols, aldehydes, and sterols. The primary purpose of this layer is to maintain water balance and prevent desiccation, as described in Chapter 6, but many of the cuticular lipid components have important secondary roles as intraspecific contact chemical signals (pheromones). These roles include species and sex recognition during reproductive interactions, and nestmate recognition and other colony organization functions in social insects. Thus, these compounds are essential mediators of insect behaviors. Cuticular compounds are also exploited by parasitoids and predators as interspecific contact cues (kairomones) to aid in host location. [Pg.163]

Riederer, M. and Schneider, G. (1990). The effect of the environment on the permeability and composition of Citrus leaf cuticles. 2. Composition of soluble cuticular lipids and correlation with transport properties. Planta, 180, 154-165. [Pg.202]

Combined glc and mass spectrometry provide the capability to deal with the complex mixtures of closely related compounds often found in plant cuticles. Even though identification of new compounds solely by their mass spectra cannot be considered reliable, mass spectrometry has become an invaluable tool in identifying known types of compounds in cuticular lipids. For example, methyl branches in alkanes can be located by cleavage on both sides of the substituted carbon (Fig. 5). Mass spectrometry is also the most suitable technique for identifying branched fatty acids (Tulloch, 1976 Jack-son and Blomquist, 1976 Nicolaides and Apon, 1977). Functional groups such as carbonyl groups and hydroxyl groups in the aliphatic chain can be... [Pg.580]

Although during the past two decades much progress has been made in our understanding of the chemistry and biochemistry of cuticular lipids, the function of these components has received much less attention. The cuticle represents the barrier between the plant and its environment, and therefore it probably plays an important role in the interaction between the two. Such interactions can be viewed from physical and chemical points of view. [Pg.631]

Hurst (19) discusses the similarity in action of the pyrethrins and of DDT as indicated by a dispersant action on the lipids of insect cuticle and internal tissue. He has developed an elaborate theory of contact insecticidal action but provides no experimental data. Hurst believes that the susceptibility to insecticides depends partially on the cuticular permeability, but more fundamentally on the effects on internal tissue receptors which control oxidative metabolism or oxidative enzyme systems. The access of pyrethrins to insects, for example, is facilitated by adsorption and storage in the lipophilic layers of the epicuticle. The epicuticle is to be regarded as a lipoprotein mosaic consisting of alternating patches of lipid and protein receptors which are sites of oxidase activity. Such a condition exists in both the hydrophilic type of cuticle found in larvae of Calliphora and Phormia and in the waxy cuticle of Tenebrio larvae. Hurst explains pyrethrinization as a preliminary narcosis or knockdown phase in which oxidase action is blocked by adsorption of the insecticide on the lipoprotein tissue components, followed by death when further dispersant action of the insecticide results in an irreversible increase in the phenoloxidase activity as a result of the displacement of protective lipids. This increase in phenoloxidase activity is accompanied by the accumulation of toxic quinoid metabolites in the blood and tissues—for example, O-quinones which would block substrate access to normal enzyme systems. The varying degrees of susceptibility shown by different insect species to an insecticide may be explainable not only in terms of differences in cuticle make-up but also as internal factors associated with the stability of oxidase systems. [Pg.49]

Plants were probably the first to have polyester outerwear, as the aerial parts of higher plants are covered with a cuticle whose structural component is a polyester called cutin. Even plants that live under water in the oceans, such as Zoestra marina, are covered with cutin. This lipid-derived polyester covering is unique to plants, as animals use carbohydrate or protein polymers as their outer covering. Cutin, the insoluble cuticular polymer of plants, is composed of inter-esterified hydroxy and hydroxy epoxy fatty acids derived from the common cellular fatty acids and is attached to the outer epidermal layer of cells by a pectinaceous layer (Fig. 1). The insoluble polymer is embedded in a complex mixture of soluble lipids collectively called waxes [1], Electron microscopic examination of the cuticle usually shows an amorphous appearance but in some plants the cuticle has a lamellar appearance (Fig. 2). [Pg.5]

Terrestrial BMOs have also been widely used for monitoring environmental contaminants. In particular, the lipid-like waxy cuticle layer of various types of plant leaves has been used to monitor residues of HOCs in the atmosphere. However, some of the problems associated with aquatic BMOs apply to terrestrial BMOs as well. For example, Bohme et al. (1999) found that the concentrations of HOCs with log KoaS < 9 (i.e., those compounds that should have attained equilibrium) varied by as much as 37-fold in plant species, after normalization of residue concentrations to levels in ryegrass (Lolium spp.). These authors suggested that differences in cuticular wax composition (quality) were responsible for this deviation from equilibrium partition theory. Other characteristics of plant leaves may affect the amount of kinetically-limited and particle-bound HOCs sampled by plant leaves but to a lesser extent (i.e., <4-fold), these include age, surface area, topography of the surface, and leaf orientation. [Pg.7]

The third, and perhaps least understood, mechanism regulating contact pheromone production involves its transport to the cuticular surface. The detection of large amounts of hydrocarbons and pheromone internally, within the hemolymph, prompted an examination of lipid transport in B. germanica. Gu et al. (1995) and Sevala etal. (1997) isolated and purified a high density lipoprotein, lipophorin, that carries hydrocarbons, contact pheromone, and JH within the hemolymph. The accumulated evidence supports the idea that the hydrocarbons and contact pheromone components are produced by oenocytes within the abdominal integument, carried by lipophorin, and differentially deposited in the cuticle and ovaries (Fan et al.,... [Pg.212]

The inducibility of Prl by proteinaceous compounds released enzymatically from insect cuticle was also studied inM anisopliae (Paterson et al., 1994b). In the case of Schistocerca gregaria cuticle treated with KOH in order to remove proteins, no induction of Prl production was observed, while cuticle treated with chloroform or ether to remove lipids was able to induce enzyme production. Digestion of cuticle with Prl or the trypsin-like protease Pr2 ofM anisopliae resulted in peptides mainly in the range of 150-2000 Da. The addition of these peptides at 3 pg Ala equivalents ml"1 led to the induction of Prl production to a level (75%) similar to that observed in the case of untreated insect cuticle. The ability of various amino acids and peptides abundant in insect cuticular protein (Ala, Gly, Ala-Ala, Ala-Ala-Ala, Ala-Pro and Pro-Ala) to induce Prl was tested but none of them was found to increase enzyme production in the levels observed with cuticle, or peptides enzymatically released from the cuticle. [Pg.284]

As stated by Blomquist et al. (1998) in their chapter, the line of demarcation between glandular or cuticular release of semiochemical signals is not always clear . This statement echoes an earlier one by Blum (1985), who reported that insect exocrine glands consisting of modified epidermal cells located throughout the body could perform de novo biosynthesis and secretion of behavioral chemicals. Later, Blum (1987) put forth a unified chemoso-ciality concept proposing that epicuticular lipids carried numerous exocrine compounds and that the cuticle could be compared to a thin layer phase. Nevertheless, it is known that in various non-social insects epicuticular hydrocarbons are synthesized by modified cells often associated with the epidermis, the oenocytes (see above), and that these oenocytes can be located in several sites within insects. [Pg.82]

We know the most about cuticular hydrocarbons, because they are abundant and because it is relatively easy to isolate and identify them. They are also the most hydrophobic lipid components, and so should provide the best barrier to water-loss. -Alkanes isolated from insect cuticles typically have chain lengths of 20-40 carbons. These can be modified by insertion of cis double bonds, or addition of one or more methyl groups. Relatively polar surface lipids include alcohols, aldehydes, ketones and wax esters (see Chapter 9). Given this diversity, is it possible to predict lipid phase behavior (and, by extension, waterproofing characteristics) from composition alone If so, a large body of literature would become instantly interpretable in the context of water balance. Unfortunately, this is not the case. [Pg.106]

Transpiration through the cuticle involves more than just the single step of diffusion through the epicuticular lipid layer. Molecules of water must leave the tissues adjacent to the cuticle, diffuse through the cuticle itself, enter the lipid layer, diffuse across the lipids, and enter the gas phase outside the animal. Each step is likely to be affected by temperature to a different extent. Lipid composition and physical properties can also differ from one region of the cuticle to the next, so that the biophysical details of cuticular transpiration may not be homogeneous across the entire animal. Thus, transpiration at the organismal level involves multiple steps, and parallel routes for water flux. [Pg.110]

Cuticular hydrocarbons are part of the lipid layer of the insect cuticle that protects from desiccation (Lockey, 1988) and are thus present in basically every social insect (see Chapter 6). Insects have the sensory apparatus to detect these profiles. So it is not surprising that they utilize variations in hydrocarbon profiles between individuals within and between species to detect various properties in other individuals, such as species identity, gender, colony membership (Howard and Blomquist, 1982, 2005 and various chapters in Part II of this book). In this chapter I will review the evidence indicating that hydrocarbon profiles are also used in colonies of ants, bees, and wasps for the regulation of reproduction. I will especially focus on patterns of variation in hydrocarbon profiles on the cuticle and the eggs in relation to fertility differences, which has not been done in such detail in previous reviews (Heinze, 2004 Monnin, 2006 Hefetz, 2007 Le Conte and Hefetz, 2008 Peeters and Liebig, 2009). [Pg.254]

Quantitative changes in lipid compounds on the silk and cuticle of females correlate significantly with changes in female sexual receptivity in spiders. For example, female T. atrica attach a contact sex pheromone to their web (Trabalon et al., 1997,2005 Prouvost et al., 1999). This pheromone consists of a complex mixture of saturated hydrocarbons, methyl esters (methyl tetradecanoate, methyl pentadecanoate, methyl hexadecanoate, and methyl octadecanoate) and their fatty acids (tetradecanoic, pentadecanoic, hexadecanoic, and cis,cis-9,12-octadecadienoic acids). The female uses cuticular compounds, which are applied to the silk in substantial amounts during web construction. Modification of chemical profiles makes the female attractive to males (Trabalon et al., 2005). Receptive females are different to unreceptive ones with respect to three fatty acids (hexadecanoic, octadeca-dienoic and octadecenoic acids) and three methyl esters (linoleate, oleate, and stearate) present on both the web and the cuticle. Our combined results from chemical analyses and behavioral assays demonstrate clearly that these contact compounds are quantitatively correlated with the behavior of spiders. [Pg.353]

The chemical composition of the arachnid cuticle, especially the lipid layer, can be used for information transfer. These substances act as releaser pheromones and are identified by the arachnid after contact with another animal. Behavioral observations on arachnids demonstrate that chemical contact compounds are able to inhibit aggressive behavior between conspecifics (prevent cannibalism) and are used for sex recognition. The production of the cuticular compounds is sex- and age-dependent. Different studies... [Pg.365]


See other pages where Cuticle Cuticular lipids is mentioned: [Pg.140]    [Pg.231]    [Pg.5]    [Pg.10]    [Pg.23]    [Pg.30]    [Pg.35]    [Pg.75]    [Pg.105]    [Pg.111]    [Pg.307]    [Pg.110]    [Pg.185]    [Pg.113]    [Pg.634]    [Pg.603]    [Pg.158]    [Pg.235]    [Pg.125]    [Pg.303]    [Pg.304]    [Pg.306]    [Pg.29]    [Pg.30]    [Pg.45]    [Pg.77]    [Pg.100]    [Pg.100]    [Pg.103]    [Pg.104]    [Pg.105]    [Pg.115]    [Pg.247]    [Pg.325]   
See also in sourсe #XX -- [ Pg.580 ]




SEARCH



Cuticular

Cuticular lipids

Lipids cuticle

© 2024 chempedia.info