Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transfer characteristic, current-voltage

Fig. 6. (a) Transfer characteristics of (b) i -Si TFT element. The drain current, / is plotted against the gate voltage, for three drain potentials A,... [Pg.362]

The first realization of a conjugated polymer/fullerene diode [89] was achieved only recently after the detection of the ultrafasl phoioinduced electron transfer for an lTO/MEH-PPV/CW)/Au system. The device is shown in Figure 15-18. Figure 15-19 shows the current-voltage characteristics of such a bilayer in the dark at room temperature. The devices discussed in the following section typically had a thickness of 100 nm for the MEH-PPV as well as the fullerene layer. Positive bias is defined as positive voltage applied to the 1TO contact. The exponential current tum-on at 0.5 V in forward bias is clearly observable. The rectification ratio at 2 V is approximately l()4. [Pg.594]

Figure 9.7a shows an example of a-Si H TFT transfer characteristics in linear regime with different W/L ratios and an example of a-Si H TFT characteristics in saturation regime with W/L = 170 pm/6 kpm. A threshold voltage (Vth) of 10 = 11 V, a field-effect mobility (p) of 0.2 0.3 cm2/(V s), a subthreshold swing slope of 0.8 dec/V, and a current ON/OFF ratio of larger than 106 for VGS from —10 to 30 V were obtained from these curves for a-Si H TFTs. These devices were used in 4-a-Si H TFTs AM-PLEDs. The electrical properties of a-Si H TFTs used in 3-a-Si H TFTs AM-PLEDs are described in Ref. [18]. [Pg.596]

FIGURE 9.7 Measured characteristics of fabricated a-Si H TFTs. (a) Transfer characteristics at Fds = 0.1 V for TFTs with different gate width, (b) an example of /DS- Vos characteristics for current-temperature-stress (CTS) measurements, (c) extracted A Vth versus stress time at RT and 80°C, and (d) Cadence Spectre simulation of pixel electrode circuit for threshold voltage shift of a-Si H TFTs are shown. (From Hong, Y., Nahm, J.-Y., and Kanicki, J., IEEE J. Selected Top. Quantum Electron. Org. Light-Emitting Diodes, 10, 1, 2004. With permission.)... [Pg.598]

The rotating disc electrode is constructed from a solid material, usually glassy carbon, platinum or gold. It is rotated at constant speed to maintain the hydrodynamic characteristics of the electrode-solution interface. The counter electrode and reference electrode are both stationary. A slow linear potential sweep is applied and the current response registered. Both oxidation and reduction processes can be examined. The curve of current response versus electrode potential is equivalent to a polarographic wave. The plateau current is proportional to substrate concentration and also depends on the rotation speed, which governs the substrate mass transport coefficient. The current-voltage response for a reversible process follows Equation 1.17. For an irreversible process this follows Equation 1.18 where the mass transfer coefficient is proportional to the square root of the disc rotation speed. [Pg.18]

SAMFETs have also been used in chemical sensing. The a-substituted quincpiethiophene SAMFETs were covered with a 10-nm pinhole-riddled iron tetraphenylporphyrin chloride layer, that acts as a receptor to nitric oxide (NO), an important biomarker [74]. The threshold voltage, measured by the FET transfer characteristics with the porphyrin receptor shifts upon increased exposure to NO. Annealing the monolayer FET in vacuum restores the initial FET behavior. Also, in the single monolayer HBC assembled FETs between metallic SWCNT source and drain electrodes increased current levels were measured in /d-Fds and Aj-Fg characteristics (Fig. 9) upon exposure to solutions of the electron acceptor TCNQ [68]. While the mechanism of response is not known, TCNQ has an affinity for coronene, and likely gives rise to charge transfer between electron-deficient TCNQ... [Pg.232]

Fig. 11.4. Logarithmic amplifier, (a) Schematic of a logarithmic amplifier. A diode is used as the feedback element in a current amplifier. The current-voltage characteristics are exponential. The output voltage is then proportional to the logarithm of the input current, (b) The transfer curve of a typical logarithmic amplifier, AD757N from Analog Devices. The reference current is internally set to be 10 p,A. It is accurate up to six decades. Fig. 11.4. Logarithmic amplifier, (a) Schematic of a logarithmic amplifier. A diode is used as the feedback element in a current amplifier. The current-voltage characteristics are exponential. The output voltage is then proportional to the logarithm of the input current, (b) The transfer curve of a typical logarithmic amplifier, AD757N from Analog Devices. The reference current is internally set to be 10 p,A. It is accurate up to six decades.
An STM probe has been used to isolate individual MS (M = Cd, Pb) particles and to measure electronic phenomena (55,56,81). The MS films were prepared either by exposure of metal ion/fatty acid films to H2S (55,56) or by transfer of a compressed DDAB-complexed CdS monolayer (81). All the films were transferred onto highly oriented pyrolytic graphite (HOPG) for the STM measurements. A junction was created at an individual CdS particle with the STM tip as one electrode and the graphite as the other, and the current/voltage characteristics of the panicles were measured. For the particle prepared in the fatty acid films the I/V curves exhibit step-like features characteristic of monoelectron phenomena. In the case of the DDAB-coated CdS particles the I/V measurements demonstrated n-type semiconductor behavior. The absence of steps in this system is probably a reflection of the larger size of the particles in the DDAB films (8 nm by AFM) compared to the 2-nm particle size typically found for MS particles formed in fatty acid films. [Pg.273]


See other pages where Transfer characteristic, current-voltage is mentioned: [Pg.603]    [Pg.603]    [Pg.284]    [Pg.76]    [Pg.461]    [Pg.724]    [Pg.726]    [Pg.208]    [Pg.235]    [Pg.282]    [Pg.27]    [Pg.249]    [Pg.178]    [Pg.338]    [Pg.368]    [Pg.433]    [Pg.435]    [Pg.177]    [Pg.133]    [Pg.217]    [Pg.230]    [Pg.235]    [Pg.339]    [Pg.144]    [Pg.300]    [Pg.204]    [Pg.34]    [Pg.868]    [Pg.208]    [Pg.367]    [Pg.423]    [Pg.199]    [Pg.290]    [Pg.312]    [Pg.9]    [Pg.110]    [Pg.133]    [Pg.349]    [Pg.352]    [Pg.353]    [Pg.401]    [Pg.201]   
See also in sourсe #XX -- [ Pg.603 ]




SEARCH



Current-voltage

Voltage characteristics

© 2024 chempedia.info