Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

CTP synthetase

Figure 20.9 The positions in the pathway for de novo pyrimidine nucleotide synthesis where GLUCOSE provides the ribose molecule and GLUTAMINE provides nitrogen atoms. Glucose forms ribose 5-phosphate, via the pentose phosphate pathway (see chapter 6), which enters the pathway, after phosphorylation, as 5-phospho-ribosyl 1-pyrophosphate. Glutamine provides the nitrogen atom to synthesise carbamoylphos-phate (with formation of glutamate), and also to form cytidine triphosphate (CTP) from uridine triphosphate (UTP), catalysed by the enzyme CTP synthetase. It is the amide nitrogen of glutamine that is the nitrogen atom that is provided in these reactions. Figure 20.9 The positions in the pathway for de novo pyrimidine nucleotide synthesis where GLUCOSE provides the ribose molecule and GLUTAMINE provides nitrogen atoms. Glucose forms ribose 5-phosphate, via the pentose phosphate pathway (see chapter 6), which enters the pathway, after phosphorylation, as 5-phospho-ribosyl 1-pyrophosphate. Glutamine provides the nitrogen atom to synthesise carbamoylphos-phate (with formation of glutamate), and also to form cytidine triphosphate (CTP) from uridine triphosphate (UTP), catalysed by the enzyme CTP synthetase. It is the amide nitrogen of glutamine that is the nitrogen atom that is provided in these reactions.
Figure 20.13 Summary of the reactions by which all four deoxy-ribonucleoside triphosphates can be synthesised from the nucleosides, adenosine and uridine. The reactions are summaries of the processes presented in Figures 20.8, 20.9 and 20.12. AMP is converted to IMP by a deaminase (Chapter 6). The conversion of UTP to CTP is catalysed by CTP synthetase. Figure 20.13 Summary of the reactions by which all four deoxy-ribonucleoside triphosphates can be synthesised from the nucleosides, adenosine and uridine. The reactions are summaries of the processes presented in Figures 20.8, 20.9 and 20.12. AMP is converted to IMP by a deaminase (Chapter 6). The conversion of UTP to CTP is catalysed by CTP synthetase.
CARNOSINE SYNTHETASE CHAPERONES CHOLINE KINASE CHOLOYL-CoA SYNTHETASE COBALAMIN ADENOSYLTRANSFERASE 4-COUMAROYL-CoA SYNTHETASE CREATINE KINASE CTP SYNTHETASE CYTIDYLATE KINASE 2-DEHYDRO-3-DEOXYGLUCONOKINASE DEHYDROGLUCONOKINASE DEOXYADENOSINE KINASE DEOXYADENYLATE KINASE DEOXYCYTIDINE KINASE (DEOXYjNUCLEOSIDE MONOPHOSPHATE KINASE DEOXYTHYMIDINE KINASE DEPHOSPHO-CoA KINASE DETHIOBIOTIN SYNTHASE DIACYLGLYCEROL KINASE DIHYDROFOLATE SYNTHETASE DNA GYRASES DNA REVERSE GYRASE ETHANOLAMINE KINASE EXONUCLEASE V... [Pg.725]

At high cellular concentrations dFdCTP inhibits CTP synthetase so that CTP and dCTP production is further down regulated. [Pg.107]

Cytidine triphosphate (CTP) is produced by amination of UTP by CTP synthetase (Figure 22.22). [Note The nitrogen is provided by glutamine—another example of a reaction in nucleotide biosynthesis in which this amino acid is required.]... [Pg.300]

Finally orotidylate is decarboxylated to yield UMP, which of course contains one of the bases of RNA. Cellular kinases convert UMP to UTP. Transfer of an amido nitrogen from glutamine by CTP synthetase converts UTP to CTP this reaction uses an ATP high-energy phosphate. [Pg.110]

CPSase of arginine biosynthesis anthranilate synthetase component II p-aminobenzoaie synthetase GMP and CTP synthetases ... [Pg.34]

The atoms of the pyrimidine ring are derived from carbamoyl phosphate and aspartate, as shown in Fig. 15-14. The de novo biosynthesis of pyrimidine nucleotides is shown in Fig. 15-15. The first completely formed pyrimidine ring is that of dihydroorotate. Only after oxidation to orotate is the ribose attached to produce orotidylate. The compound 5-phosphoribosyl 1-pyrophosphate (P-Rib-PP) provides the ribose phosphate. L-Glutamine is used as a substrate donating nitrogen atoms at reactions 1 and 9, catalyzed by carbamoyl phosphate synthetase II and CTP synthetase, respectively a second... [Pg.437]

Fig. 15-15 The de novo pyrimidine biosynthetic pathway. CAP, carbamoyl phosphate CA-asp, /V-carbamoyl-L-aspartate DHO, L-dihydroorotate Oro, orotate OMP, orotidine 5 -monophosphate. Enzymes (1) carbamoyl phosphate synthetase II (2) aspartate transcarbamoylase (3) dihydroorotase, (4) dihydroorotate dehydrogenase (5) orotate phosphoribosyltransferase (6) OMP decarboxylase (7) nucleoside monophosphate kinase (8) nucleoside diphosphate kinase (9) CTP synthetase. Fig. 15-15 The de novo pyrimidine biosynthetic pathway. CAP, carbamoyl phosphate CA-asp, /V-carbamoyl-L-aspartate DHO, L-dihydroorotate Oro, orotate OMP, orotidine 5 -monophosphate. Enzymes (1) carbamoyl phosphate synthetase II (2) aspartate transcarbamoylase (3) dihydroorotase, (4) dihydroorotate dehydrogenase (5) orotate phosphoribosyltransferase (6) OMP decarboxylase (7) nucleoside monophosphate kinase (8) nucleoside diphosphate kinase (9) CTP synthetase.
OMP is the first pyrimidine formed and is immediately decarboxylated to produce UMP. Nucleotides are then formed subsequently from UTP via CTP Synthetase. [Pg.384]

CTP has also been implicated as a regulator of PC synthesis in animals and yeast. For example, over-expression of CTP synthetase in yeast stimulates the biosynthesis of PC via the CDP-choline pathway (G.M. Carman, 1995). [Pg.226]

Figure 19 Close-up view of the solvent-filled vestibule in Escherichia coii CTP synthetase, which is proposed to form part of the ammonia tunnel in the enzyme (1S1M). Red spheres indicate water molecules, and the glutaminase and synthetase domains are colored blue and green, respectively. Residues in the flexible loop (L11) are colored gray, while those lining the tunnel are represented as sticks . Coloring C - gray, O - red, N - blue, and S - yellow. Image rendered in PYMOL. Figure 19 Close-up view of the solvent-filled vestibule in Escherichia coii CTP synthetase, which is proposed to form part of the ammonia tunnel in the enzyme (1S1M). Red spheres indicate water molecules, and the glutaminase and synthetase domains are colored blue and green, respectively. Residues in the flexible loop (L11) are colored gray, while those lining the tunnel are represented as sticks . Coloring C - gray, O - red, N - blue, and S - yellow. Image rendered in PYMOL.
Table 1 Steady-state kinetic parameters for CTP formation cataiyzed by wiid-type CTP synthetase and the LI 09A CTP synthetase mutant using various nitrogen sources... Table 1 Steady-state kinetic parameters for CTP formation cataiyzed by wiid-type CTP synthetase and the LI 09A CTP synthetase mutant using various nitrogen sources...
The first step in the pathway, formation of carbamoyl aspartate from aspartate and carbamoyl phosphate, is the primary regulatory point in the pathway. The enzyme, aspartate transcarbamoylase (ATCase) (see here), is activated by ATP and inhibited by CTP, which is the end product of the pathway. Another point of regulation is CTP synthetase, which is feedback inhibited by CTP and activated by GTP. In bacteria, synthesis of ATCase subunits is inhibited by high levels of UTP. The inverted regulatory effects of purine and pyrimidines in the pathway are yet another way cells maintain a proper balance of nucleotides. [Pg.649]

FIG. 6.13 Mammalian pyrimidine salvage and interconversion pathways. Enzymes listed in Figs 6.13-6.17 are as follows (1) deoxyCMP deaminase (2) thymidylate synthase (3) ribonucleotide reductase (4) deoxyuridine triphosphatase (5) CTP synthetase (6) nucleotide kinase (7) deoxyTMP kinase (8) nucleotide diphosphokinase (9) non-specific phosphatase or nucleotidase (10) cytidine kinase (11) pyrimidine phos-phorylase or hydrolase (12) uracil PRTase (13) cytidine deaminase (14) thymidine kinase (15) cytidine phosphotransferase (16) uridine phosphotransferase (17) thymidine phosphotransferase (18) deoxyribo-nucleotide phosphotransferase (19) cytosine PRTase. [Pg.105]

The synthesis of deoxyuridine, cytidine, deoxycytidine and thymidine nucleotides from UMP (Fig. 6.13) involves three reactions CTP synthetase, ribonucleotide reductase, and thymidylate synthase (80). The first enzyme converts UTP into CTP and the second catalyzes the conversion of CDP, UDP, ADP and GDP into their respective deoxyribonucleotides. The last enzyme, thymidylate synthase, catalyzes the reductive methylation of deoxyUMP at the C-5 position giving deoxyTMP. The human enzyme has been extensively studied as it is a target enzyme in cancer chemotherapy. Besides these three enzymes, two other enzymes are involved in pyrimidine nucleotide synthesis and interconversion. DeoxyCMP deaminase converts deoxyCMP into deoxyUMP and deoxyUTP triphosphatase converts deoxyUTP into deoxyUMP. Giardia lamblia, and Trichomonas vaginalis lack both ribonucleotide reductase and thymidylate synthase and... [Pg.105]

The enzymes are functionally similar to their mammalian counterparts. The dihydro-orotate oxidase, unlike that of the kinetoplastids, is associated with the parasite mitochondrion (99). However, the last two enzymes, the cytoplasmic orotate PRTase and OMP decarboxylase, are separate enzymes instead of being arranged in a bifunctional complex as is found in mammalian cells (99,100). Metabolic studies indicate that CTP synthetase must be present. [Pg.111]

UMP is phosphorylated to UTP. An amino group, derived from the amide of glutamine, is added to carbon 4 to produce CTP by the enzyme CTP synthetase (this reaction cannot occur at the nucleotide monophosphate level). UTP and CTP are precursors for the synthesis of RNA (see Fig. 41.14). The synthesis of thymidine triphosphate (TTP) will be described in section IV. [Pg.755]


See other pages where CTP synthetase is mentioned: [Pg.178]    [Pg.734]    [Pg.301]    [Pg.1201]    [Pg.274]    [Pg.275]    [Pg.566]    [Pg.5]    [Pg.1032]    [Pg.566]    [Pg.233]    [Pg.553]    [Pg.97]    [Pg.692]    [Pg.189]    [Pg.189]    [Pg.190]    [Pg.191]    [Pg.192]    [Pg.59]    [Pg.156]    [Pg.259]    [Pg.259]    [Pg.331]    [Pg.651]    [Pg.651]    [Pg.138]    [Pg.443]   
See also in sourсe #XX -- [ Pg.428 , Pg.429 ]




SEARCH



CTP

© 2024 chempedia.info