Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Crystallization epitaxial growth

Lotz, B Thierry, A, Pofymer Crystals Epitaxial Growth in Encyclopedia of Materials Science and Technol<, Elsevier, 2001, pp 1261-12. [Pg.52]

JD Parsons. Single crystal epitaxial growth of P-SiC for devices and integrated circut applications. [Pg.472]

Another example of epitaxy is tin growdi on the (100) surfaces of InSb or CdTe a = 6.49 A) [14]. At room temperature, elemental tin is metallic and adopts a bet crystal structure ( white tin ) with a lattice constant of 5.83 A. However, upon deposition on either of the two above-mentioned surfaces, tin is transfonned into the diamond structure ( grey tin ) with a = 6.49 A and essentially no misfit at the interface. Furtliennore, since grey tin is a semiconductor, then a novel heterojunction material can be fabricated. It is evident that epitaxial growth can be exploited to synthesize materials with novel physical and chemical properties. [Pg.927]

Extended defects range from well characterized dislocations to grain boundaries, interfaces, stacking faults, etch pits, D-defects, misfit dislocations (common in epitaxial growth), blisters induced by H or He implantation etc. Microscopic studies of such defects are very difficult, and crystal growers use years of experience and trial-and-error teclmiques to avoid or control them. Some extended defects can change in unpredictable ways upon heat treatments. Others become gettering centres for transition metals, a phenomenon which can be desirable or not, but is always difficult to control. Extended defects are sometimes cleverly used. For example, the smart-cut process relies on the controlled implantation of H followed by heat treatments to create blisters. This allows a thin layer of clean material to be lifted from a bulk wafer [261. [Pg.2885]

Physics and chemistry researchers approach III—V synthesis and epitaxial growth, ie, growth in perfect registry with the atoms of an underlying crystal, differently. The physics approach, known as molecular beam epitaxy (MBE), is essentially the evaporation (14—16) of the elements, as illustrated in Figure 4. The chemistry approach, organometaUic chemical vapor deposition (OMCVD) (17) is exemplified by the typical chemical reaction ... [Pg.118]

In 1985 Car and Parrinello invented a method [111-113] in which molecular dynamics (MD) methods are combined with first-principles computations such that the interatomic forces due to the electronic degrees of freedom are computed by density functional theory [114-116] and the statistical properties by the MD method. This method and related ab initio simulations have been successfully applied to carbon [117], silicon [118-120], copper [121], surface reconstruction [122-128], atomic clusters [129-133], molecular crystals [134], the epitaxial growth of metals [135-140], and many other systems for a review see Ref. 113. [Pg.82]

In addition to these direct long-range forces there may also exist effective long-range forces, produced by some medium or substrate. An especially drastic effect is expected for epitaxial growth on a semiconductor. If adsorbate atoms are different from the substrate, the adsorbed layers have a lattice constant different from that of the substrate. In the case of thick adsorbate layers, an instability then appears on the surface of the crystal such that the surface undergoes wavy deformation, which might even lead to... [Pg.879]

Supramolecular structures formed during the crystallization of the melt under a tensile stress have already been described by Keller and Machin25. These authors have proposed a model for the formation of structures of the shish-kebab type according to which crystallization occurs in two stages in the first stage, the application of tensile stress leads to the extension of the molecules and the formation of a nucleus from ECC and the second stage involves epitaxial growth of folded-chain lamellae. [Pg.215]

Thin polymer films may also be investigated by TEM and high resolution images are obtained for e.g. thin films of liquid crystalline polymers [64]. Usually thin microtome cuts from bulk samples are investigated, but also epitaxial growth of polyoxymethylene on NaCl [152], chain folding of polyethylene crystals [153], epitaxial crystallization of polypropylene on polystyrene [154] or monomolecular polystyrene particles [155] are observed. The resolution is, however, in most cases not comparable to STM. [Pg.387]

The nature of the deposit and the rate of nucleation at the very beginning of the deposition are affected, among other factors, by the nature of the substrate. A specific case is that of epitaxy where the structure of the substrate essentially controls the structure of the deposit.Plb lP ] Epitaxy can be defined as the growth of a crystalline film on a crystalline substrate, with the substrate acting as a seed crystal. When both substrate and deposit are of the same material (for instance silicon on silicon) or when their crystalline structures (lattice parameters) are identical or close, the phenomena is known as homoepitaxy. When the lattice parameters are different, it is heteroepitaxy. Epitaxial growth cannot occur if these stmctural differences are too great. [Pg.56]

In addition, there are some multilayer systems without epitaxial growth, consisting of crystal/amorphous constituents, amorphous/amorphous constituents, such as TiN/CNx... [Pg.155]

It is noteworthy that the HRTEM cannot distinguish core and shell even by combining X-ray or electron diffraction techniques for some small nanoparticles. If the shell epitaxially grows on the core in the case of two kinds of metals with same crystal type and little difference of lattice constant, the precise structure of the bimetallic nanoparticles cannot be well characterized by the present technique. Hodak et al. [153] investigated Au-core/Ag-shell or Ag-core/Au-shell bimetallic nanoparticles. They confirmed that Au shell forms on Ag core by the epitaxial growth. In the TEM observations, the core/shell structures of Ag/Au nanoparticles are not clear even in the HRTEM images in this case (Figure 7). [Pg.59]


See other pages where Crystallization epitaxial growth is mentioned: [Pg.219]    [Pg.75]    [Pg.162]    [Pg.262]    [Pg.219]    [Pg.75]    [Pg.162]    [Pg.262]    [Pg.341]    [Pg.342]    [Pg.301]    [Pg.926]    [Pg.184]    [Pg.119]    [Pg.444]    [Pg.48]    [Pg.368]    [Pg.512]    [Pg.527]    [Pg.346]    [Pg.3]    [Pg.871]    [Pg.330]    [Pg.307]    [Pg.243]    [Pg.67]    [Pg.262]    [Pg.365]    [Pg.236]    [Pg.737]    [Pg.86]    [Pg.122]    [Pg.126]    [Pg.136]    [Pg.156]    [Pg.156]    [Pg.157]    [Pg.160]    [Pg.193]    [Pg.199]    [Pg.287]    [Pg.288]    [Pg.30]   
See also in sourсe #XX -- [ Pg.50 ]




SEARCH



Crystal growth epitaxial

Epitaxial

Epitaxial crystallization

Epitaxial crystallization crystals

Epitaxial growth

Epitaxis

Epitaxy epitaxial growth

Epitaxy, epitaxial

© 2024 chempedia.info