Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Crystallinity technique

Amphiphiles often have a complex phase behaviour with several liquid crystalline phases These liquid crystalline phases are often characterised by long-range order in one directior together with the formation of a layer structure. The molecules may nevertheless be able tc move laterally within the layer and perpendicular to the surface of the layer. Structura information can be obtained using spectroscopic techniques including X-ray and neutror diffraction and NMR. The quadrupolar splitting in the deuterium NMR spectrum can be... [Pg.411]

First, considerably greater emphasis has been placed on semimicro techniques and their application to preparations, separations, analysis and physical determinations such as those of molecular weight. We have therefore greatly expanded the section on Manipulation on a semi-micro scale which was in the Third Edition, and we have described many more preparations on this scale, some independent and others as alternatives to the larger-scale preparations which immediately precede them. Some 40 separate preparations on the semi-micro scale are described in detail, in addition to specific directions for the preparation of many classes of crystalline derivatives required for identification purposes. The equipment required for these small-scale reactions has been selected on a realistic basis, and care has been taken not to include the very curious pieces of apparatus sometimes suggested as necessary for working on the semi-micro scale. [Pg.585]

The technique of the filtration of hot solutions has already been described in Section 11,28. The filtration of cold solutions will now be considered this operation is usually carried out when it is desired to separate a crystalline solid from the mother liquor in which it is suspended. When substantial quantities of a solid are to be handled, a Buchner funnel of convenient size is employed. The ordinary Buchner fimnel (Fig. 11,1, 7, a) consists of a cylindrical porcelain funnel carrying a fixed, flat, perforated porcelain plate. It is fitted by means of a rubber stopper or a good cork into the neck of a thick-walled filtering flask (also termed filter flask, Buchner flask or suction flask) (Fig. 11,1, 7, c), which is connected by means of thick-walled rubber tubing (rubber pressure tubing) to a similar flask or safety bottle, and the latter is attached by rubber pressure tubing to a filter pump the safety bottle or trap is essential since a sudden fall in water pressure may result in the water sucking back. The use of suction renders rapid filtration possihle... [Pg.130]

The element is a gray-white metalloid. In its pure state, the element is crystalline and brittle, retaining its luster in air at room temperature. It is a very important semiconductor material. Zone-refining techniques have led to production of crystalline germanium for semiconductor use with an impurity of only one part in lOio. [Pg.93]

Polymers are difficult to model due to the large size of microcrystalline domains and the difficulties of simulating nonequilibrium systems. One approach to handling such systems is the use of mesoscale techniques as described in Chapter 35. This has been a successful approach to predicting the formation and structure of microscopic crystalline and amorphous regions. [Pg.307]

Solids can be crystalline, molecular crystals, or amorphous. Molecular crystals are ordered solids with individual molecules still identihable in the crystal. There is some disparity in chemical research. This is because experimental molecular geometries most often come from the X-ray dilfraction of crystalline compounds, whereas the most well-developed computational techniques are for modeling gas-phase compounds. Meanwhile, the information many chemists are most worried about is the solution-phase behavior of a compound. [Pg.318]

Present day techniques for structure determination in carbohydrate chemistry are sub stantially the same as those for any other type of compound The full range of modern instrumental methods including mass spectrometry and infrared and nuclear magnetic resonance spectroscopy is brought to bear on the problem If the unknown substance is crystalline X ray diffraction can provide precise structural information that m the best cases IS equivalent to taking a three dimensional photograph of the molecule... [Pg.1052]

In order to carry out an experimental study of the kinetics of crystallization, it is first necessary to be able to measure the fraction d of polymer crystallized. While this is necessary, it is not sufficient we must also be able to follow changes in the fraction of crystallinity with time. So far in this chapter we have said nothing about the experimental aspects of determining 6. We shall now briefly rectify this situation by citing some of the methods for determining 6. It must be remembered that not all of these techniques will be suitable for kinetic studies. [Pg.227]

Figure 4.7c illustrates how x-ray diffraction techniques can be applied to the problem of evaluating 6. If the intensity of scattered x-rays is monitored as a function of the angle of diffraction, a result like that shown in Fig. 4.7c is obtained. The sharp peak is associated with the crystalline diffraction, and the broad peak, with the amorphous contribution. If the area A under each of the peaks is measured, then... [Pg.229]

As noted above, not all techniques which provide information regarding crystallinity are useful to follow the rate of crystallization. In addition to sufficient sensitivity to monitor small changes, the method must be rapid and suitable for isothermal regulation, quite possibly over a range of different temperatures. Specific volume measurements are especially convenient for this purpose. We shall continue our discussion using specific volume as the experimental method. [Pg.229]

The EXAFS technique is used primarily for investigations of disordered materials and amorphous solids. Figure 8.35(b) shows how interference occurs between the wave associated with a photoelectron generated on atom A and the waves scattered by nearest-neighbour atoms B in a crystalline material. [Pg.330]

Solvent Resistance. At temperatures below the melting of the crystallites, the parylenes resist all attempts to dissolve them. Although the solvents permeate the continuous amorphous phase, they are virtually excluded from the crystalline domains. Consequently, when a parylene film is exposed to a solvent a slight swelling is observed as the solvent invades the amorphous phase. In the thin films commonly encountered, equilibrium is reached fairly quickly, within minutes to hours. The change in thickness is conveniently and precisely measured by an interference technique. As indicated in Table 6, the best solvents, specifically those chemically most like the polymer (eg, aromatics such as xylene), cause a swelling of no more than 3%. [Pg.439]

Microscopy (qv) plays a key role in examining trace evidence owing to the small size of the evidence and a desire to use nondestmctive testing (qv) techniques whenever possible. Polarizing light microscopy (43,44) is a method of choice for crystalline materials. Microscopy and microchemical analysis techniques (45,46) work well on small samples, are relatively nondestmctive, and are fast. Evidence such as sod, minerals, synthetic fibers, explosive debris, foodstuff, cosmetics (qv), and the like, lend themselves to this technique as do comparison microscopy, refractive index, and density comparisons with known specimens. Other microscopic procedures involving infrared, visible, and ultraviolet spectroscopy (qv) also are used to examine many types of trace evidence. [Pg.487]

Transmission electron microscopy (tern) is used to analyze the stmcture of crystals, such as distinguishing between amorphous siUcon dioxide and crystalline quartz. The technique is based on the phenomenon that crystalline materials are ordered arrays that scatter waves coherently. A crystalline material diffracts a beam in such a way that discrete spots can be detected on a photographic plate, whereas an amorphous substrate produces diffuse rings. Tern is also used in an imaging mode to produce images of substrate grain stmctures. Tern requires samples that are very thin (10—50 nm) sections, and is a destmctive as well as time-consuming method of analysis. [Pg.356]

Nickel also is deterrnined by a volumetric method employing ethylenediaminetetraacetic acid as a titrant. Inductively coupled plasma (ICP) is preferred to determine very low nickel values (see Trace AND RESIDUE ANALYSIS). The classical gravimetric method employing dimethylglyoxime to precipitate nickel as a red complex is used as a precise analytical technique (122). A colorimetric method employing dimethylglyoxime also is available. The classical method of electro deposition is a commonly employed technique to separate nickel in the presence of other metals, notably copper (qv). It is also used to estabhsh caUbration criteria for the spectrophotometric methods. X-ray diffraction often is used to identify nickel in crystalline form. [Pg.13]


See other pages where Crystallinity technique is mentioned: [Pg.178]    [Pg.300]    [Pg.341]    [Pg.1378]    [Pg.1634]    [Pg.2493]    [Pg.455]    [Pg.314]    [Pg.611]    [Pg.250]    [Pg.310]    [Pg.20]    [Pg.272]    [Pg.277]    [Pg.320]    [Pg.332]    [Pg.353]    [Pg.455]    [Pg.217]    [Pg.270]    [Pg.289]    [Pg.314]    [Pg.331]    [Pg.333]    [Pg.333]    [Pg.336]    [Pg.339]    [Pg.65]    [Pg.219]    [Pg.465]    [Pg.149]    [Pg.299]    [Pg.382]    [Pg.10]    [Pg.136]    [Pg.389]   


SEARCH



Crystalline polymers experimental techniques

Crystallinity diffraction technique

Side-chain liquid crystalline polymers measurement techniques

© 2024 chempedia.info