Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Crystalline polymers, motion

PHOTOMECHANICAL LIQUID CRYSTALLINE POLYMERS MOTION IN RESPONSE TO LIGHT... [Pg.233]

Fig. 29. Observed and calculated 2H NMR spectra for the mesogenic groups of a) the nematic (m = 2), b) the smectic (m = 6) liquid crystalline polymer in the glassy state, showing the line shape changes due to the freezing of the jump motion of the labelled phenyl ring. The exchange frequency corresponds to the centre of the distribution of correlation times. Note that the order parameters are different, S = 0.65 in the frozen nematic, and S = 0.85 in the frozen smectic system, respectively... Fig. 29. Observed and calculated 2H NMR spectra for the mesogenic groups of a) the nematic (m = 2), b) the smectic (m = 6) liquid crystalline polymer in the glassy state, showing the line shape changes due to the freezing of the jump motion of the labelled phenyl ring. The exchange frequency corresponds to the centre of the distribution of correlation times. Note that the order parameters are different, S = 0.65 in the frozen nematic, and S = 0.85 in the frozen smectic system, respectively...
Many polymer-salt complexes based on PEO can be obtained as crystalline or amorphous phases depending on the composition, temperature and method of preparation. The crystalline polymer-salt complexes invariably exhibit inferior conductivity to the amorphous complexes above their glass transition temperatures, where segments of the polymer are in rapid motion. This indicates the importance of polymer segmental motion in ion transport. The high conductivity of the amorphous phase is vividly seen in the temperature-dependent conductivity of poly(ethylene oxide) complexes of metal salts. Fig. 5.3, for which a metastable amorphous phase can be prepared and compared with the corresponding crystalline material (Stainer, Hardy, Whitmore and Shriver, 1984). For systems where the amorphous and crystalline polymer-salt coexist, NMR also indicates that ion transport occurs predominantly in the amorphous phase. An early observation by Armand and later confirmed by others was that the... [Pg.97]

T] is in general greater than T2. This difference can in part be a consequence of the slower modes of polymer motion, which are characterized by correlation times sufficiently long that they do not contribute significantly to T] but do to T2. It is therefore important, in terms of describing the fine structure of the non-crystalline regions, to understand the type motions which contribute to T2 and to develop a rationale for the relatively broad lines that are observed for most crystalline polymers. [Pg.200]

At this point it has been established that there are at least two basic mechanisms which contribute to the broad lines that are observed for the crystalline polymers. The residual zero frequency line broadening component can be analyzed in more detail. Specific attention can be given to factors which are a consequence of the chain-like character of the molecules. The local field at a given nucleus is the sum of the individual fields contributed by the neighboring magnetic nuclei. Segmental motions will induce a time dependence to the variables so that the individual contributions can be described by the equation (46)... [Pg.205]

Softening as a result of micro-Brownian motion occurs in amorphous and crystalline polymers, even if they are crosslinked. However, there are characteristic differences in the temperature-dependence of mechanical properties like hardness, elastic modulus, or mechanic strength when different classes of polymers change into the molten state. In amorphous, non-crosslinked polymers, raise of temperature to values above results in a decrease of viscosity until the material starts to flow. Parallel to this softening the elastic modulus and the strength decrease (see Fig. 1.9). [Pg.19]

In the second half of this article, we discuss dynamic properties of stiff-chain liquid-crystalline polymers in solution. If the position and orientation of a stiff or semiflexible chain in a solution is specified by its center of mass and end-to-end vector, respectively, the translational and rotational motions of the whole chain can be described in terms of the time-dependent single-particle distribution function f(r, a t), where r and a are the position vector of the center of mass and the unit vector parallel to the end-to-end vector of the chain, respectively, and t is time, (a should be distinguished from the unit tangent vector to the chain contour appearing in the previous sections, except for rodlike polymers.) Since this distribution function cannot describe internal motions of the chain, our discussion below is restricted to such global chain dynamics as translational and rotational diffusion and zero-shear viscosity. [Pg.119]

As pointed out above with relation to the data at 87 °C, the Tic of the crystalline-amorphous interphase is appreciably longer than that of the amorphous phase, suggesting the retention of the helical molecular chain conformation in the interphase. We also note that a Tic of 65-70 s for the crystalline phase is significantly shorter than that for other crystalline polymers such as polyethylene and poly-(tetramethylene oxide), whose crystalline structure is comprised of planar zig-zag molecular-chain sequences. In the crystalline region composed of helical molecular chains, there may be a minor molecular motion in the TiC frame, with no influence on the crystalline molecular alignment that is detected by X-ray diffraction analyses. Such a relatively short TiC of the crystalline phase may be a character of the crystalline structure that is formed by helical molecular chain sequences. [Pg.89]

Fillers such as silica In silicone rubber have the same effect as crystallinity, reducing polymer motion by physical crosslinking and increasing the tortuosity of the diffusion path (14,15). [Pg.57]

Solvent-free polymer-electrolyte-based batteries are still developmental products. A great deal has been learned about the mechanisms of ion conductivity in polymers since the discovery of the phenomenon by Feuillade et al. in 1973 [41], and numerous books have been written on the subject. In most cases, mobility of the polymer backbone is required to facilitate cation transport. The polymer, acting as the solvent, is locally free to undergo thermal vibrational and translational motion. Associated cations are dependent on these backbone fluctuations to permit their diffusion down concentration and electrochemical gradients. The necessity of polymer backbone mobility implies that noncrystalline, i.e., amorphous, polymers will afford the most highly conductive media. Crystalline polymers studied to date cannot support ion fluxes adequate for commercial applications. Unfortunately, even the fluxes sustainable by amorphous polymers discovered to date are of marginal value at room temperature. Neat polymer electrolytes, such as those based on poly(ethyleneoxide) (PEO), are only capable of providing viable current densities at elevated temperatures, e.g., >60°C. [Pg.462]

Those which do crystallise invariably do not form perfectly crystalline materials but instead are semi-crystalline with both crystalline and amorphous regions. The crystalline phases of such polymers are characterised by their melting temperature (TJ. Many thermoplastics are, however, completely amorphous and incapable of crystallisation, even upon annealing. Amorphous polymers (and amorphous phases of semi-crystalline polymers) are characterised by their glass transition temperature (T), the temperature at which they transform abruptly from the glassy state (hard) to the rubbery state (soft). This transition corresponds to the onset of chain motion below T the polymer chains are unable to move and are frozen in position. Both T and T increase with increasing chain stiffness and increasing forces of intermolecular attraction. [Pg.195]


See other pages where Crystalline polymers, motion is mentioned: [Pg.497]    [Pg.497]    [Pg.233]    [Pg.44]    [Pg.52]    [Pg.212]    [Pg.23]    [Pg.25]    [Pg.44]    [Pg.47]    [Pg.102]    [Pg.718]    [Pg.120]    [Pg.189]    [Pg.118]    [Pg.20]    [Pg.119]    [Pg.7]    [Pg.129]    [Pg.87]    [Pg.68]    [Pg.83]    [Pg.150]    [Pg.1426]    [Pg.120]    [Pg.265]    [Pg.17]    [Pg.302]    [Pg.34]    [Pg.88]    [Pg.157]    [Pg.169]    [Pg.317]    [Pg.243]    [Pg.312]    [Pg.314]    [Pg.55]    [Pg.144]   
See also in sourсe #XX -- [ Pg.298 ]




SEARCH



Polymer motions

© 2024 chempedia.info