Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Crystal structures, polymers crystallinity

The essential difference between the traditional concept of a crystal structure and crystalline polymers is that the former is a single crystal whilst the polymer is polycrystalline. A single crystal means a crystalline particle grown without interruption from a single nucleus and relatively free from defects. The term polycrystallinity refers to a state in which clusters of single crystals are involved, developed from the more or less simultaneous growth of many nuclei. [Pg.22]

For crystalline polymers, the bulk modulus can be obtained from band-structure calculations. Molecular mechanics calculations can also be used, provided that the crystal structure was optimized with the same method. [Pg.315]

The polymers compared all have similar crystal structures but are different from polyethylene, which excludes the possibility for also including the latter in this series. Also note that the isotactic structure of these molecules permits crystallinity in the first place. With less regular microstructure, crystallization would not occur at all. [Pg.211]

Structure and Crystallinity. The mechanical—optical properties of polycarbonates are those common to amorphous polymers. The polymer may be crystallized to some degree by prolonged heating at elevated temperature (8 d at 180°C) (16), or by immersion ia acetone (qv). Powdered amorphous powder appears to dissolve partially ia acetone, initially becoming sticky, then hardening and becoming much less soluble as it crystallizes. Enhanced crystallization of polycarbonate can also be caused by the presence of sodium phenoxide end groups (17). [Pg.280]

Crystal Structure. The crystal stmcture of PVDC is fairly well estabhshed. Several unit cells have been proposed (63). The unit cell contains four monomer units with two monomer units per repeat distance. The calculated density, 1.96 g/cm, is higher than the experimental values, which are 1.80—1.94 g/cm at 25°C, depending on the sample. This is usually the case with crystalline polymers because samples of 100% crystallinity usually cannot be obtained. A dkect calculation of the polymer density from volume changes during polymerization yields a value of 1.97 g/cm (64). If this value is correct, the unit cell densities may be low. [Pg.430]

Polymers can exist in a number of states. They may be amorphous resins, rubbers or fluids or they can be crystalline structures. TTie molecular and the crystal structures can be monoaxially or biaxially oriented. Heterogeneous blends of polymers in different states of aggregation enable materials to be produced with combinations of properties not shown by single polymers. [Pg.57]

Compared with most other crystalline polymers the permeability of P4MP1 is rather high. This is no doubt due to the ability of gas molecules to pass through the open crystal structure with the large molecular spacing. [Pg.271]

The crystalline structure of bis-phenol A polymers has been thoroughly studied by Prietschk and some of the data he obtained on the crystal structure are summarised in Table 20.1. [Pg.562]

MW and MWD are very significant parameters in determining the end use performance of polymers. However, difficulty arises in ascertaining the structural properties relationship, especially for the crystalline polymers, due to the interdependent variables, i.e., crystallinity, orientation, crystal structure, processing conditions, etc., which are influenced by MW and MWD of the material. The presence of chain branches and their distribution in PE cause further complications in establishing this correlation. [Pg.287]

Crystalline polymers are pressure-sensitive materials due to their weak interchain potential. Therefore, they have different crystal structures under different conditions. [Pg.295]

In most cases crystal densities differ from the densities of amorphous polymers. This leads to differences in refractive index, which in turn cause scatter of light at boundaries between amorphous and crystalline zones. Such materials are opaque except in certain instances where the crystal structure can be carefully oriented to prevent such scatter of light. [Pg.920]

The fringed micelle theory has been less favoured recently following research on the subject of polymer single crystals. This work has led to the suggestion that polymer crystallisation takes place by single molecules folding themselves at intervals of about 10 nm to form lamellae as shown in Figure 3.3b. These lamellae appear to be the fundamental structures of crystalline polymers. [Pg.43]

The polymer = 8.19 dlg in hexafluoro-2-propanol, HFIP, solution) in Figs 1 and 2 is prepared on photoirradiation by a 500 W super-high-pressure Hg lamp for several hours and subjected to the measurements without purification. The nmr peaks in Fig. 1 (5 9.36, 8.66 and 8.63, pyrazyl 7.35 and 7.23, phenylene 5.00, 4.93, 4.83 and 4.42, cyclobutane 4.05 and 1.10, ester) correspond precisely to the polymer structure which is predicted from the crystal structure of the monomer. The outstanding sharpness of all the peaks in this spectrum indicates that the photoproduct has few defects in its chemical structure. The X-ray patterns of the monomer and polymer in Fig. 2 show that they are nearly comparable to each other in crystallinity. These results indicate a strictly crystal-lattice controlled process for the four-centre-type photopolymerization of the [l OEt] crystal. [Pg.124]

Vc crystalline Va, amorphous). The densities of the pure crystalline (pc) and pure amorphous (pa) polymer must be known at the temperature and pressure used to measure p. The value of pc can be obtained from the unit cell dimensions when the crystal structure is known. The value of pa can be obtained directly for polymers that can be quenched without crystallization, polyfethylene terephtha-late) is one example. However, for most semi-crystalline polymers the value of pa is extrapolated from the variation of the specific volume of the melt with temperature [16,63]. [Pg.261]

Classical X-ray diffraction and scattering is carried out in the subarea of wide-angle X-ray scattering (WAXS). The corresponding scattering patterns yield information on the arrangement of polymer-chain segments (e.g., orientation of the amorphous phase, crystalline structure, size of crystals, crystal distortions, WAXS crystallinity). [Pg.25]


See other pages where Crystal structures, polymers crystallinity is mentioned: [Pg.49]    [Pg.80]    [Pg.49]    [Pg.890]    [Pg.49]    [Pg.204]    [Pg.209]    [Pg.244]    [Pg.50]    [Pg.121]    [Pg.251]    [Pg.454]    [Pg.489]    [Pg.38]    [Pg.883]    [Pg.295]    [Pg.318]    [Pg.60]    [Pg.171]    [Pg.142]    [Pg.164]    [Pg.48]    [Pg.48]    [Pg.564]    [Pg.225]    [Pg.272]    [Pg.31]    [Pg.19]    [Pg.21]    [Pg.37]    [Pg.85]    [Pg.88]    [Pg.112]    [Pg.114]   
See also in sourсe #XX -- [ Pg.519 , Pg.648 , Pg.649 , Pg.659 , Pg.662 , Pg.665 , Pg.681 ]




SEARCH



Crystal Crystalline structure

Crystal Crystallinity

Crystal structures, polymers crystalline phase

Crystalline polymers crystallization

Crystallinity, crystallization

Crystals, crystalline

Liquid crystalline polymers crystal structure, effect

Liquid-crystalline polymers crystal structure

Polymers crystalline structure

© 2024 chempedia.info