Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Crystal structures binary compounds

The NaTl-type structure is the prototype for Zintl phases, which are inter-metallic compounds which crystallize in typical non-metal crystal structures. Binary AB compounds LiAl, LiGa, Liln and Naln are both isoelectronic (isovalent) and isostructural with NaTl. In the Li2AlSi ternary compound, A1 and Si form a diamond-like framework, in which the octahedral vacant sites of the A1 sublattice are filled by Li atoms, as shown in Fig. 13.7.2(b). [Pg.496]

Table 8. Properties and Crystal Structure Data for Important Actinide Binary Compounds... Table 8. Properties and Crystal Structure Data for Important Actinide Binary Compounds...
C.19 Aluminum oxide, alumina, exists in a variety of crystal structures, some of which are beautiful and rare. Write the formula for aluminum oxide, which is a binary compound of aluminum and oxygen. The mass of a rectangular slab of aluminum oxide of dimensions 2.5 cm X 3.0 cm X 4.0 cm is 102 g. What is the density of aluminum oxide ... [Pg.54]

Other Binary Compounds.—Scandium nitride and zirconium and titanium carbide do not conform with the theoretical radii. It is possible that these crystals do not consist essentially of Sc+3, N 3, Ti+4, Zr+4 and C-4 ions, especially since zirconium and titanium nitride, ZrN and TiN, also form crystals with the sodium chloride structure but possibly also the discrepancy can be attributed to deformation of the anions, which have very high mole refraction values. [Pg.268]

It is also shown that theoretically a binary compound should have the sphalerite or wurzite structure instead of the sodium chloride structure if the radius ratio is less than 0.33. The oxide, sulfide, selenide and telluride of beryllium conform to this requirement, and are to be considered as ionic crystals. It is found, however, that such tetrahedral crystals are particularly apt to show deformation, and it is suggested that this is a tendency of the anion to share an electron pair with each cation. [Pg.281]

The transition-metal monopnictides MPn with the MnP-type structure discussed above contain strong M-M and weak Pn-Pn bonds. Compounds richer in Pn can also be examined by XPS, such as the binary skutterudites MPn , (M = Co, Rh, Ir Pn = P, As, Sb), which contain strong Pn-Pn bonds but no M-M bonds [79,80], The cubic crystal structure consists of a network of comer-sharing M-centred octa-hedra, which are tilted to form nearly square Pnn rings creating large dodecahedral voids [81]. These voids can be filled with rare-earth atoms to form ternary variants REM Pnn (RE = rare earth M = Fe, Ru, Os Pn = P, As, Sb) (Fig. 26) [81,82], the antimonides being of interest as thermoelectric materials [83]. [Pg.129]

It should not be inferred that the crystal structures described so far apply to only binary compounds. Either the cation or anion may be a polyatomic species. For example, many ammonium compounds have crystal structures that are identical to those of the corresponding rubidium or potassium compounds because the radius NH4+ ion (148 pm) is similar to that of K+ (133 pm) or Rb+ (148 pm). Both NO j and CO, have ionic radii (189 and 185 pm, respectively) that are very close to that of Cl- (181 pm), so many nitrates and carbonates have structures identical to the corresponding chloride compounds. Keep in mind that the structures shown so far are general types that are not necessarily restricted to binary compounds or the compounds from which they are named. [Pg.227]

Hydrides of variable composition are not only formed with pure metals as solvents. A large number of the binary metal hydrides are non-stoichiometric compounds. Non-stoichiometric compounds are in general common for d,f and some p block metals in combination with soft anions such as sulfur, selenium and hydrogen, and also for somewhat harder anions like oxygen. Hard anions such as the halides, sulfates and nitrides form few non-stoichiometric compounds. Two factors are important the crystal structures must allow changes in composition, and the transition metal must have accessible oxidation states. These factors are partly related. FeO,... [Pg.221]

A similar procedure was also used by Villars to find atomic property expressions which could be used to distinguish the crystal structures of intermetallic compounds 182 sets of tabulated physical properties and calculated atomic properties were considered. These were combined, for binary phases, according to the modulus sums, differences and ratios. The best separations were obtained by using three-dimensional maps, which, for a binary AVB,., x [Pg.309]

Remarks on the crystal chemistry of the alloys of the 3rd group metals. A large number of intermediate phases have been identified in the binary alloys formed by the rare earth metals and actinides with several elements. A short illustrative list is shown in Tables 5.19 and 5.20. Compounds of a few selected rare earth metals and actinides have been considered in order to show some frequent stoichiometries and crystal structure types. The existence of a number of analogies among the different metals considered and the formation of some isostructural series of compounds may be noticed. [Pg.390]

Simple Binary and Related Compounds.—Oxides. The information presently available concerning the crystal structures and properties of vanadium oxides has been tabulated. [Pg.36]

Simple Binary and Related Compounds.—Reviews have been published which describe crystal structures of, and chemical bonding in, the Ta-O system. Structural aspects of niobium and tantalum oxides and oxide fluorides have... [Pg.59]

Binary Systems and Related Compounds.—Halides. The thermodynamics of gas-phase equilibria in the W-F2 and W-F2-H2 systems at high temperatures have been described.The Raman spectrum of solid MoF exhibits Mo—F stretching bands at 746, 722, and 690 cm These results suggest that the compound has a similar structure to NbF4, with each molybdenum co-ordinated to six fluorine atoms.The Raman spectrum of crystalline M0F5 has also been reported and interpreted in terms of the crystal structure.The electronic spectrum of liquid M0F5 has been determined and shown to be consistent with a trigonal-bipyramidal molecular unit. ... [Pg.136]

Earlier X-ray powder diffraction studies by de Haan and Visser provided similar results. These authors investigated the impact of the selenium content on the structure type of the crystals and deduced the existence of eight-memteed ring molecules but were unable to decide whether the crystals consisted of binary compounds of sulfur and selenium or simply of Seg and Sg. [Pg.180]

As the valency of the metal increases, the bonding in these simple binary compounds becomes more covalent and the highly symmetrical structures characteristic of the simple ionic compounds occur far less frequently, with molecular and layer structures being common. Many thousands of inorganic crystal structures exist, ffere we describe just a few of those that are commonly encountered and those that occur in later chapters. [Pg.49]

A large number of binary AB compounds formed by elements of groups IIIA and VA or IIA and VIA (the so-called III-V and II-VI compounds) also fcrystallize in diamond-like structures. Among the I-VII compounds, copper (I) halides and Agl crystallize in this structure. Unlike in diamond, the bonds in such binary compounds are not entirely covalent because of the difference in electronegativity between the constituent atoms. This can be understood in terms of the fractional ionic character or ionicity of bonds in these crystals. [Pg.8]


See other pages where Crystal structures binary compounds is mentioned: [Pg.367]    [Pg.95]    [Pg.42]    [Pg.367]    [Pg.127]    [Pg.213]    [Pg.100]    [Pg.144]    [Pg.561]    [Pg.33]    [Pg.434]    [Pg.222]    [Pg.1090]    [Pg.595]    [Pg.222]    [Pg.243]    [Pg.13]    [Pg.71]    [Pg.151]    [Pg.205]    [Pg.408]    [Pg.606]    [Pg.617]    [Pg.157]    [Pg.2]    [Pg.234]    [Pg.28]    [Pg.39]    [Pg.45]    [Pg.64]    [Pg.48]    [Pg.100]   
See also in sourсe #XX -- [ Pg.214 , Pg.215 , Pg.216 ]

See also in sourсe #XX -- [ Pg.221 , Pg.222 ]




SEARCH



Binary crystal structures

Binary ionic compounds crystal structures

Binary structures

Compounds, crystal structures

Crystal compounds

© 2024 chempedia.info