Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Binary ionic compounds crystal structures

It should not be inferred that the crystal structures described so far apply to only binary compounds. Either the cation or anion may be a polyatomic species. For example, many ammonium compounds have crystal structures that are identical to those of the corresponding rubidium or potassium compounds because the radius NH4+ ion (148 pm) is similar to that of K+ (133 pm) or Rb+ (148 pm). Both NO j and CO, have ionic radii (189 and 185 pm, respectively) that are very close to that of Cl- (181 pm), so many nitrates and carbonates have structures identical to the corresponding chloride compounds. Keep in mind that the structures shown so far are general types that are not necessarily restricted to binary compounds or the compounds from which they are named. [Pg.227]

As the valency of the metal increases, the bonding in these simple binary compounds becomes more covalent and the highly symmetrical structures characteristic of the simple ionic compounds occur far less frequently, with molecular and layer structures being common. Many thousands of inorganic crystal structures exist, ffere we describe just a few of those that are commonly encountered and those that occur in later chapters. [Pg.49]

A large number of binary AB compounds formed by elements of groups IIIA and VA or IIA and VIA (the so-called III-V and II-VI compounds) also fcrystallize in diamond-like structures. Among the I-VII compounds, copper (I) halides and Agl crystallize in this structure. Unlike in diamond, the bonds in such binary compounds are not entirely covalent because of the difference in electronegativity between the constituent atoms. This can be understood in terms of the fractional ionic character or ionicity of bonds in these crystals. [Pg.8]

Solid phases of binary systems, like the liquid phases, are very commonly of variable composition. Here, as with the liquid, the stable range of composition is larger, the more similar the two components are. This of course is quite c-ontrary to the chemists notion of definite chemical composition, definite structural formulas, etc., but those notions are really of extremely limited application. It happens that the solid phases in the system water—ionic compound are often of rather definite composition, and it is largely from this rather special case that the idea of definite compositions in solids has become so firmly rooted. In such a system, there are normally two solid phases ice and the crystalline ionic compound. Ice can take up practically none of any ionic compound, so that it has practically no range of compositions. And many ionic crystals... [Pg.273]

Despite the relatively short history of the chemistry of fluoride compounds, several thousands of binary and ternary fluoride compounds have been described, and their systematization is well developed [39 - 41]. Significant progress was achieved in the study of the crystal chemistry of fluoride compounds thanks to the ionic character of their chemical bonds and corresponding simplicity of their crystal structure. The structure of these kinds of compounds is defined primarily by the geometry and the energy of mainly... [Pg.8]

In the series of the binary halides of selenium and tellurium, the crystal structure determinations of tellurium tetrafluoride (100) and of tellurium tetrachloride on twinned crystals (65, 66) were the key to understanding the various and partly contradictory spectroscopic and other macroscopic properties (e.g., 66,161,168,169,219,220, 412), as well as the synthetic potential of the compounds. In contrast to the monomeric molecular i//-tbp gas phase structures with C2v symmetry (417), the solid state structures of both are polynuclear. As the prototype of the chlorides and bromides of selenium and tellurium, crystalline tellurium(IV) chloride has a cubane-like tetrameric structure with approximate Td symmetry (Fig. 1). Within the distorted TeCla+a octa-hedra the bonds to the triply bridging chlorine ligands are much longer than to the terminal chlorines. The bonding system can be described either covalently as Te4Cli6 molecules, or, in an ionic approximation, as [(TeCl Cn4] with a certain degree of stereochemical activity of the lone pairs toward the center of the voluminous cubane center (65, 66). [Pg.237]

Since the X-ray diffraction studies of Zintl et al. , these members of the family of intermetallic compounds have been of special interest because some of their chemical properties are unusual for intermetallic phases. Many experimental investigations have been reported for binary and ternary B32 type compounds. Besides the crystal structure " , the thermodynamic behavior , electrical conductivity ", magnetic susceptibility , NMR data elastic constants - and optical properties have been studied. Additionally for LiAl electrochemical investigations have been performed in view of the recent interest in fast ionic conductors " . ... [Pg.92]

Binary compounds are ones with two elements present. Simple crystal structures may be classed as ones in which each atom (or ion) is surrounded in a regular way by atoms (or ions) of the other kind. Even with this limited scope many structures are possible. Figure 1 shows a selection of simple ones that exemplify some important principles. Although many are found with ionic compounds, some of these structures are shown by compounds with covalent bonding, and a discussion of the bonding factors involved in favoring one structure rather than another is deferred to Topic D4. [Pg.129]

Section 4.4.4, when a binary compound is formed between elements with very different values of their electronegativity coefficients, ionic bonding results. The classical example of ionic bond formation is that in sodium chloride. The crystal structure of NaCl is shown in Figure 5.7. [Pg.106]

Kubaschewski (1972) collected and compared the enthalpies of formation of complex oxides from binary oxides. He did not offer any systematic correlation of these enthalpies with structural properties. Hoppe (1966,1970a, b, 1975) developed the MAPLE concept (Madelung part of lattice energy) as a tool to guide the structural interpretation of bonding in complex oxides and halides. It requires as input parameters the unit cell of a compound and positions of all atoms, and it treats the crystal as an ionic array of point charges. If crystal structure determinations have been properly done, MAPLE calculations for a complex compound are within 2% (sometimes larger, sometimes smaller) of the MAPLE values of the binary (parent) compounds. Therefore, purely ionic-model calculations are not suflftciently sensitive to correlate quantitatively with the relatively small enthalpies of solid-state complexation. [Pg.276]


See other pages where Binary ionic compounds crystal structures is mentioned: [Pg.380]    [Pg.28]    [Pg.14]    [Pg.83]    [Pg.378]    [Pg.876]    [Pg.83]    [Pg.127]    [Pg.434]    [Pg.48]    [Pg.55]    [Pg.20]    [Pg.1]    [Pg.207]    [Pg.9]    [Pg.595]    [Pg.177]    [Pg.117]    [Pg.5255]    [Pg.82]    [Pg.94]    [Pg.258]    [Pg.2804]    [Pg.81]    [Pg.269]    [Pg.54]    [Pg.4588]    [Pg.5254]    [Pg.42]    [Pg.26]    [Pg.95]    [Pg.28]    [Pg.444]    [Pg.254]    [Pg.28]    [Pg.215]    [Pg.600]    [Pg.391]    [Pg.1]   
See also in sourсe #XX -- [ Pg.158 , Pg.344 , Pg.435 , Pg.436 , Pg.456 ]




SEARCH



Binary crystal structures

Binary structures

Compounds, crystal structures

Crystal compounds

Crystal ionic

Crystal ionicity

Crystal structures binary compounds

Ionic compounds

Ionic compounds structures

Ionic crystal, structure

Ionic structure

© 2024 chempedia.info