Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Crystal mixed control

A dimer portion can be prepared exclusively from the mixed crystal by controlling the wavelength of irradiating light (>410nm) and isolated by preparative thin-layer chromatography. The high-performance liquid chro-... [Pg.164]

In most commercial processes, borax is obtained from lake brines, tincal and colemanite. The primary salt constituents of brine are sodium chloride, sodium sulfate, sodium carbonate and potassium chloride. The percent composition of borax as Na2B40 in brine is generally in the range 1.5 to 1.6%. Borax is separated from these salts by various physical and chemical processes. The brine solution (mixed with mother liquor) is subject to evaporation and crystahzation for the continuous removal of NaCl, Na2C03 and Na2S04, respectively. The hot liquor consists of concentrated solution of potassium salts and borate components of the brine. The insoluble solid particles are filtered out and the liquor is cooled rapidly in continuous vacuum crystallizers under controlled conditions of temperatures and concentrations to crystallize KCl. Cystallization of borax along with KCl from the concentrated liquor must not occur at this stage. KCl is separated from the hquor by filtration. Bicarbonate then is added to the liquor to prevent any formation of sodium... [Pg.117]

Reactivity within (DL)-PheNCA crystals provides a number of simple ways to de-symmetrize the racemic mixtures of the homochiral oligopeptides. For example, L-2-(thienyl)-alanineNCA (ThieNCA) molecules have been shown to enantioselectively occupy the L-sites in the DL-PheNCA host crystals. Lattice-controlled polymerization of such D-Phe/(L-Phe L-Thie)-NCA mixed crystals yields libraries of non-racemic oligopeptides of ho-... [Pg.155]

A semibatch reaction crystallizer with a profiled bottom and/ or a draft tube was used by Stavek et al. (1988) to study the influence of hydrodynamic conditions on the controlled doublejet precipitation of silver chloride microcrystals. The crystallizer is a cylindrical vessel (14cm in diameter) equipped with four radial baffles and a six-pitched-blade impeller to provide good mixing. Silver nitrate and potassium chloride solutions were added at a constant rate to the crystallizer, which contained aqueous gelatin solution. The temperature and silver ion concentration in the crystallizer were controlled during the run. [Pg.233]

Fig. 2. Solute distribution and transport phenomena at the interface of a growing crystal (a) Instability of the crystal-liquid interface and formation of a nonplanar pattern (schematically), (b) Faceted growth. It is assumed that the solute concentration in the liquid far from the interface (Cq) is constant due to forced and natural convection (stirring) whereas a thin solute diffusion layer (S) is quiet and possesses a solute distribution profile depending on the crystallization process type (a) interfacial control or a surface reaction (interfacial kinetics), Ce < C RJ C a difference between Cj and Cj is responsible for the driving force to buUd up the crystal surface (c) diffusion control Cj < Cj, providing a driving force for bulk diffusion in the liquid (b) mixed control. Fig. 2. Solute distribution and transport phenomena at the interface of a growing crystal (a) Instability of the crystal-liquid interface and formation of a nonplanar pattern (schematically), (b) Faceted growth. It is assumed that the solute concentration in the liquid far from the interface (Cq) is constant due to forced and natural convection (stirring) whereas a thin solute diffusion layer (S) is quiet and possesses a solute distribution profile depending on the crystallization process type (a) interfacial control or a surface reaction (interfacial kinetics), Ce < C RJ C a difference between Cj and Cj is responsible for the driving force to buUd up the crystal surface (c) diffusion control Cj < Cj, providing a driving force for bulk diffusion in the liquid (b) mixed control.
A typical flow diagram for pentaerythritol production is shown in Figure 2. The main concern in mixing is to avoid loss of temperature control in this exothermic reaction, which can lead to excessive by-product formation and/or reduced yields of pentaerythritol (55,58,59). The reaction time depends on the reaction temperature and may vary from about 0.5 to 4 h at final temperatures of about 65 and 35°C, respectively. The reactor product, neutralized with acetic or formic acid, is then stripped of excess formaldehyde and water to produce a highly concentrated solution of pentaerythritol reaction products. This is then cooled under carefully controlled crystallization conditions so that the crystals can be readily separated from the Hquors by subsequent filtration. [Pg.465]

Zeolites. A large and growing industrial use of aluminum hydroxide and sodium alurninate is the manufacture of synthetic zeoHtes (see Molecular sieves). ZeoHtes are aluminosiHcates with Si/Al ratios between 1 and infinity. There are 40 natural, and over 100 synthetic, zeoHtes. AH the synthetic stmctures are made by relatively low (100—150°C) temperature, high pH hydrothermal synthesis. For example the manufacture of the industriaHy important zeoHtes A, X, and Y is generaHy carried out by mixing sodium alurninate and sodium sHicate solutions to form a sodium alurninosiHcate gel. Gel-aging under hydrothermal conditions crystallizes the final product. In special cases, a small amount of seed crystal is used to control the synthesis. [Pg.137]

The SIMULAR, developed by Hazard Evaluation Laboratory Ltd., is a chemical reactor control and data acquisition system. It can also perform calorimetry measurements and be employed to investigate chemical reaction and unit operations such as mixing, blending, crystallization, and distillation. Ligure 12-24 shows a schematic detail of the SIMULAR, and Ligure 12-25 illustrates the SIMULAR reaction calorimeter with computer controlled solids addition. [Pg.946]

Han, C.D., 1969. A control study of isothemial mixed crystallizers. Industrial and Engineering Chemistry Process Design and Development, 8, 150-158. [Pg.308]


See other pages where Crystal mixed control is mentioned: [Pg.3]    [Pg.197]    [Pg.3]    [Pg.8]    [Pg.11]    [Pg.24]    [Pg.201]    [Pg.1101]    [Pg.1699]    [Pg.370]    [Pg.1235]    [Pg.189]    [Pg.212]    [Pg.280]    [Pg.34]    [Pg.95]    [Pg.51]    [Pg.496]    [Pg.95]    [Pg.126]    [Pg.926]    [Pg.1055]    [Pg.108]    [Pg.199]    [Pg.2900]    [Pg.119]    [Pg.500]    [Pg.92]    [Pg.443]    [Pg.529]    [Pg.152]    [Pg.17]    [Pg.293]    [Pg.576]    [Pg.467]    [Pg.347]    [Pg.1665]    [Pg.2004]    [Pg.542]   
See also in sourсe #XX -- [ Pg.78 ]




SEARCH



Control crystallization

Crystal mixed crystals

Crystallization controlling

Crystallization mixing

Crystallizer Control

Crystallizer, mixed

Crystallizers controller

Crystallizers mixing

Mixed crystals

Mixing control

© 2024 chempedia.info