Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Crystal fractionation crystallization

Fra.ctiona.1 Crystallization. Fractional crystallization, used until the early part of the twentieth century, is uneconomical for processing large quantities of lanthanides. Many recrystallization steps are required to recover high purity products. Several salts and double salts have been used ... [Pg.544]

Another expression that needs a definition is fractional crystallization. Fractional crystallization is a repetition of a crystallization process performed in order to receive a further purified... [Pg.161]

Fractional crystallization Fractional crystallization can be used to successively crystallize Ln ions, whereby the solubility difference for the lanthanide elements can be exploited. In this way you can crystallize a particular fraction of the solution that contains the specific lanthanide element that you seek. [Pg.226]

KCl —NaCl —MgS04) and in many brines. Separated by fractional crystallization, soluble water and lower alcohols. Used in fertilizer production and to produce other potassium salts. [Pg.324]

Because of the existence of numerous isomers, hydrocarbon mixtures having a large number of carbon atoms can not be easily analyzed in detail. It is common practice either to group the constituents around key components that have large concentrations and whose properties are representative, or to use the concept of petroleum fractions. It is obvious that the grouping around a component or in a fraction can only be done if their chemical natures are similar. It should be kept in mind that the accuracy will be diminished when estimating certain properties particularly sensitive to molecular structure such as octane number or crystallization point. [Pg.86]

Liquid-liquid and liquid-solid equilibria also find industrial applications in liquid-liquid extraction and fractional crystallization operations. [Pg.147]

The properties of the solids most commonly encountered are tabulated. An important problem arises for petroleum fractions because data for the freezing point and enthalpy of fusion are very scarce. The MEK (methyl ethyl ketone) process utilizes the solvent s property that increases the partial fugacity of the paraffins in the liquid phase and thus favors their crystallization. The calculations for crystallization are sensitive and it is usually necessary to revert to experimental measurement. [Pg.172]

A direct measurement of surface tension is sometimes possible from the work of cleaving a crystal. Mica, in particular, has such a well-defined cleavage plane that it can be split into large sheets of fractional millimeter thickness. Orowan... [Pg.278]

Mention was made in Section XVIII-2E of programmed desorption this technique gives specific information about both the adsorption and the desorption of specific molecular states, at least when applied to single-crystal surfaces. The kinetic theory involved is essentially that used in Section XVI-3A. It will be recalled that the adsorption rate was there taken to be simply the rate at which molecules from the gas phase would strike a site area times the fraction of unoccupied sites. If the adsorption is activated, the fraction of molecules hitting and sticking that can proceed to a chemisorbed state is given by exp(-E /RT). The adsorption rate constant of Eq. XVII-13 becomes... [Pg.705]

Figure Bl.22.1. Reflection-absorption IR spectra (RAIRS) from palladium flat surfaces in the presence of a 1 X 10 Torr 1 1 NO CO mixture at 200 K. Data are shown here for tluee different surfaces, namely, for Pd (100) (bottom) and Pd(l 11) (middle) single crystals and for palladium particles (about 500 A m diameter) deposited on a 100 A diick Si02 film grown on top of a Mo(l 10) single crystal. These experiments illustrate how RAIRS titration experiments can be used for the identification of specific surface sites in supported catalysts. On Pd(lOO) CO and NO each adsorbs on twofold sites, as indicated by their stretching bands at about 1970 and 1670 cm, respectively. On Pd(l 11), on the other hand, the main IR peaks are seen around 1745 for NO (on-top adsorption) and about 1915 for CO (tlueefold coordination). Using those two spectra as references, the data from the supported Pd system can be analysed to obtain estimates of the relative fractions of (100) and (111) planes exposed in the metal particles [26]. Figure Bl.22.1. Reflection-absorption IR spectra (RAIRS) from palladium flat surfaces in the presence of a 1 X 10 Torr 1 1 NO CO mixture at 200 K. Data are shown here for tluee different surfaces, namely, for Pd (100) (bottom) and Pd(l 11) (middle) single crystals and for palladium particles (about 500 A m diameter) deposited on a 100 A diick Si02 film grown on top of a Mo(l 10) single crystal. These experiments illustrate how RAIRS titration experiments can be used for the identification of specific surface sites in supported catalysts. On Pd(lOO) CO and NO each adsorbs on twofold sites, as indicated by their stretching bands at about 1970 and 1670 cm, respectively. On Pd(l 11), on the other hand, the main IR peaks are seen around 1745 for NO (on-top adsorption) and about 1915 for CO (tlueefold coordination). Using those two spectra as references, the data from the supported Pd system can be analysed to obtain estimates of the relative fractions of (100) and (111) planes exposed in the metal particles [26].
Experimentally, tire hard-sphere phase transition was observed using non-aqueous polymer lattices [79, 80]. Samples are prepared, brought into the fluid state by tumbling and tlien left to stand. Depending on particle size and concentration, colloidal crystals tlien fonn on a time scale from minutes to days. Experimentally, tliere is always some uncertainty in the actual volume fraction. Often tire concentrations are tlierefore rescaled so freezing occurs at ( )p = 0.49. The widtli of tire coexistence region agrees well witli simulations [Jd, 80]. [Pg.2686]

Samples can be concentrated beyond tire glass transition. If tliis is done quickly enough to prevent crystallization, tliis ultimately leads to a random close-packed stmcture, witli a volume fraction (j) 0.64. Close-packed stmctures, such as fee, have a maximum packing density of (]) p = 0.74. The crystallization kinetics are strongly concentration dependent. The nucleation rate is fastest near tire melting concentration. On increasing concentration, tire nucleation process is arrested. This has been found to occur at tire glass transition [82]. [Pg.2686]

Transfer the reaction product to a 500 ml. Claisen flask and distil over a wire gauze or from an air bath. Some acetyl chloride and acetic acid passes over first, the temperature then rises, and the fraction, b.p. 150-200°, is collected separately run out the water from the condenser when the temperature reaches 150°. The fraction, b.p. 150-200°, solidifies on cooling. Drain off any hquid from the crystals as rapidly as possible, and redistil the solid using an air condenser. CoUect the fraction b.p. 182-192° this sets to a sohd mass on cooling and melts at 63°. The yield of monochloroacetic acid is 150-175 g. [Pg.428]

Method 1. Arrange the flask containing the reaction mixture for steam distillation as in Fig. II, 40, 1. Proceed with the steam distillation until crystals of p-dibromobenzene appear in the condenser. Change the receiver and continue with the distillation until all the p-dibromobenzeiie has passed over from time to time run out the water from the condenser so that the crystals melt and run down into the receiver. Reject the residue in the flask. Transfer the first distillate to a separatory funnel, wash it with a httle water, and dry the lower layer with a little anhydrous magnesium sulphate or anhydrous calcium chloride filter. Distil slowly from a small distilling flask use a wire gauze or an air bath (Fig. II, 5, 3). Collect the fraction which passes over at 150-170° pour the residue (R), while it is still hot, into a small beaker or porcelain basin for the isolation of p-dibromobenzene. Redistil the fraction of b.p. 150-170° and collect the bromobenzene at 154-157° (3). The yield is 60 g. [Pg.536]

The chemist can try to separate the two isomers by careful fractional distillation but it will be next to impossible to do because both the cis and the trans have practically the same boiling point. There are a few things that the chemist can do or hope for to get rid of that cis isomer. The cis configuration is less stable than the trans and may switch over to the trans configuration with a little help. The chemist can gently heat the isosafrole oil to about 150°C for an hour or so. She can also try the same heating except have the oil mixed with some acetic acid. Also, the isosafrole can be fractionally distilled to ultra purity and then be allowed to simply sit for a couple of days. Trans isosafrole may spontaneously crystalize out while the cis form remains as an oil. They can then be separated by filtration. [Pg.44]

They are actually using crystallization to purify the amine from any non-amine contaminants. They later freebased the crystals and fractional distilled to get pure amphetamine with a yield of 50%. [Pg.119]


See other pages where Crystal fractionation crystallization is mentioned: [Pg.529]    [Pg.659]    [Pg.247]    [Pg.695]    [Pg.75]    [Pg.117]    [Pg.181]    [Pg.238]    [Pg.325]    [Pg.385]    [Pg.430]    [Pg.506]    [Pg.1839]    [Pg.2210]    [Pg.2223]    [Pg.2225]    [Pg.2493]    [Pg.2556]    [Pg.2688]    [Pg.2747]    [Pg.2902]    [Pg.2906]    [Pg.270]    [Pg.443]    [Pg.158]    [Pg.48]    [Pg.195]    [Pg.197]    [Pg.172]    [Pg.179]    [Pg.237]    [Pg.258]    [Pg.259]    [Pg.514]    [Pg.517]    [Pg.679]    [Pg.767]    [Pg.784]    [Pg.795]    [Pg.840]    [Pg.343]    [Pg.33]   


SEARCH



Crystal fractionation

Crystallization fractionated

Crystallization fractionation

Crystallizers fractional crystallization

Fractional crystallization

© 2024 chempedia.info