Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Crossed projections

The area under any such cross projection is identically zero (because of the orthogonality of the normal mode transformation), yet there is a real physical meaning to the cross spectrum between any two candidate mechanisms. If the INMs themselves neatly separated into modes moving the first-shell solvents and modes moving the second shell, then the cross projections would vanish. The fact that it does not is therefore a real indication that coupled motion between the two different kinds of degrees of freedom contributes to vibrational relaxation. It is, of course, precisely this kind of detailed information that we need to have in order to pursue our search for molecular mechanisms. [Pg.174]

Differences in the crossed projections have been reported between the rat and the mouse, since it has been suggested that in the latter species the VTA and the retrorubral field, but not the SNc, contribute sparse crossed projections to the striatum (Mattiace et al., 1989). In addition, inter-strain differences have been reported in mice for example, crossed projections were documented in the CBA strain, but not in the BALB/c strain (Mattiace et al., 1989). [Pg.49]

A fundamental characteristic of the vertebrate central nervous system (CNS) is bilateral symmetry along the midline (Figure 3). This symmetrical structure divides neuronal projections into two types, uncrossed projections to ipsilateral targets and crossed projections to contralateral targets. Over the past decade, the mechanism involved in the formation of crossed projections has been extensively studied in spinal cord commissural projections. Spinal commissural axons, which derive from the dorsal part of the neural tube (alar plate), initially project ventrally along the circumferential axis and then cross the ventral midline [10]. These axons have been shown to be guided by a diffusible molecule released... [Pg.459]

In case of some samples besides the cross sectional CT-slice also a projectional image is of interest. In these cases the test mode Digital Radiography (DR) is applied. In the DR-mode the object is not turned, but scanned horizontally and vertically. Again the very high dynamic of the detector and the mechanical accuracy of the complete system are of large benefit to the image quality. [Pg.586]

The END equations are integrated to yield the time evolution of the wave function parameters for reactive processes from an initial state of the system. The solution is propagated until such a time that the system has clearly reached the final products. Then, the evolved state vector may be projected against a number of different possible final product states to yield coiresponding transition probability amplitudes. Details of the END dynamics can be depicted and cross-section cross-sections and rate coefficients calculated. [Pg.233]

Fig. 10. Conformational flooding accelerates conformational transitions and makes them accessible for MD simulations. Top left snapshots of the protein backbone of BPTI during a 500 ps-MD simulation. Bottom left a projection of the conformational coordinates contributing most to the atomic motions shows that, on that MD time scale, the system remains in its initial configuration (CS 1). Top right Conformational flooding forces the system into new conformations after crossing high energy barriers (CS 2, CS 3,. . . ). Bottom right The projection visualizes the new conformations they remain stable, even when the applied flooding potentials (dashed contour lines) is switched off. Fig. 10. Conformational flooding accelerates conformational transitions and makes them accessible for MD simulations. Top left snapshots of the protein backbone of BPTI during a 500 ps-MD simulation. Bottom left a projection of the conformational coordinates contributing most to the atomic motions shows that, on that MD time scale, the system remains in its initial configuration (CS 1). Top right Conformational flooding forces the system into new conformations after crossing high energy barriers (CS 2, CS 3,. . . ). Bottom right The projection visualizes the new conformations they remain stable, even when the applied flooding potentials (dashed contour lines) is switched off.
To obtain the necessary pressure on the lid, and for general protection when the bomb is being heated, the bomb is placed in a hea y metal case G, in which the collar E of the bomb rests in a circular recess at the top of G, and the base of A just appears through the bottom of G. The lid H of the case screws down over G, and has an orifice through which the pillar F of the bomb projects when H is screwed firmly down onto G. The bottom portion of G and the sides of H are made of hexagonal cross-section so that both can be firmly held with suitable tools whilst H is being screwed down and is thus thrusting the lid C of the bomb firmly down onto the base A. [Pg.506]

Lei s relurn fo bromochlorofluoromelhane as a simple example of a chiral mole cule The Iwo enanliomers of BrClFCH are shown as ball and slick models as wedge and dash drawings and as Fischer projections m Figure 7 6 Fischer projeclions are always generated Ihe same way Ihe molecule is oriented so lhal Ihe verlical bonds al Ihe chiralily center are directed away from you and Ihe horizonlal bonds poinl toward you A projeclion of Ihe bonds onto Ihe page is a cross The chiralily center lies al Ihe center of Ihe cross bul is nol explicilly shown... [Pg.293]

They possess spherical symmetry around a center of nucleation. This symmetry projects a perfectly circular cross section if the development of the spherulite is not stopped by contact with another expanding spherulite. [Pg.241]

Like e, t is the product of two contributions the concentration N/V of the centers responsible for the effect and the contribution per particle to the attenuation. It may help us to become oriented with the latter to think of the scattering centers as opaque spheres of radius R. These project opaque cross sections of area ttR in the light path. The actual cross section is then multiplied by the scattering efficiency factor optical cross... [Pg.662]

AP is the pressure drop, cm of water Pg is the gas density, g/cm Ap is the total projected area of an entire row of baffles in the direction of inlet gas flow, cm" and At is the duct cross-sectional area, cm". The value jd is a drag coefficient for gas flow past inclined flat plates taken from Fig. 14-113, while L/ is the actual gas velocity, cm/s, which is related to the superficial gas velocity by U = L/g/cos 0. It must be noted that the angle of incidence 0 for the second and successive rows of baffles is twice the angle of incidence for the first row. Most of Calverts work was with 30° baffles, but the method correlates well with other data on 45° bafiles. [Pg.1432]

A Projected area of fragment, breach area, or fragment cross-sectional... [Pg.2279]

When assessing potential tollers for a project where an international presence is prescribed or simply expanding your selection of available tollers, the same basic approach presented here can be used. However, some elements may need to be implemented differently, expanded, or combined to accurately depict a toller s capabilities when crossing national and cultural boundaries. A client should still seek the same ethics regarding safety, environmental responsibility, quality and contractual obligations as described previously. [Pg.38]

Nx = / nowhere Ix is the radiation flux, n is the number of gas molecules in the path of the beam per cm of projected area, and a is the cross-section of absorption. Alternatively, the absorption coefficient, is defined drrough the Beer-Lambert equation... [Pg.75]

If the projected pipeline is situated in an area with dc railway lines, rail/soil potential measurements should be carried out at crossing points and where the lines run parallel a short distance apart, particularly in the neighborhood of substations, in order to ascertain the influence of stray currents. Potential differences at the soil surface can give information on the magnitude of stray current effects in the vicinity of dc railway lines. It is recommended that with existing pipelines the measurements be recorded synchronously (see Section 15.5) and taken into account during design. [Pg.276]


See other pages where Crossed projections is mentioned: [Pg.467]    [Pg.174]    [Pg.250]    [Pg.67]    [Pg.434]    [Pg.467]    [Pg.174]    [Pg.250]    [Pg.67]    [Pg.434]    [Pg.217]    [Pg.249]    [Pg.249]    [Pg.580]    [Pg.1193]    [Pg.1311]    [Pg.1458]    [Pg.2004]    [Pg.75]    [Pg.79]    [Pg.386]    [Pg.391]    [Pg.414]    [Pg.1167]    [Pg.1284]    [Pg.116]    [Pg.236]    [Pg.417]    [Pg.203]    [Pg.407]    [Pg.469]    [Pg.133]    [Pg.324]    [Pg.261]    [Pg.155]    [Pg.311]    [Pg.459]    [Pg.116]    [Pg.242]   
See also in sourсe #XX -- [ Pg.49 , Pg.250 ]




SEARCH



Angular momentum projections cross-section

Cross peaks, projections

Projection cross-section theorem

Projections of Cross Peaks

The Projection-Cross-Section Theorem

© 2024 chempedia.info