Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Crop selectivity, acetolactate synthase

Acetolactate synthase (ALS, EC 4.1.3.18) is the first common enzyme in the biosynthetic route to the branched chain amino acids, valine, leucine and isoleucine. It is the primary target site of action for at least three structurally distinct classes of herbicides, the imidazolinones (IM), sulfonylureas (SU), and triazolopyrimidines (TP) (Figure 1). SU and IM were discovered in greenhouse screening programs whereas TP was subsequently targeted as a herbicide. Numerous substitution patterns can be incorporated into the basic structure of all three classes of herbicides to provide crop selectivity as well as broad spectrum weed control. This is amply demonstrated in the seven products based on SU and four based on IM already in the market. A number of others are in various stages of development. The rapid success of ALS inhibitors as herbicidal products has attracted a world-wide research commitment. Not since the photosystem II... [Pg.270]

The sulfonylurea herbicides are a new family of chemical compounds, some of which are selectively toxic to weeds but not to crops. The selectivity of the sulfonylureas results from their metabolism to non-toxic compounds by particular crops, but not by weeds. In addition to efficient weed control, the sulfonylurea herbicides provide environmentally desirable properties such as field use rates as low as two grams/hectare and very low toxicity to mammals. The high specificity of the herbicides for their molecular target contributes to both of these properties. In addition, the low toxicity to mammals results from their lack of the target enzyme for the herbicides. Sulfonylureas inhibit the enzyme acetolactate synthase (ALS), also known as acetohydroxyacid synthase (AHAS), which catalyzes the first common step in the biosynthesis of the branched chain amino acids leucine, isoleucine and valine. In mammals these are three of the essential amino acids which must be obtained through dietary intake because the biosynthetic pathway for the branched chain amino acids is not present. The prototype structure of a sulfonylurea herbicide is shown in Figure 1. [Pg.460]

This strategy was used to engineer resistance against glyphosate, and imidazoli-nones and sulfonylureas that inhibit acetolactate synthase (ALS), a key enzyme in the biosynthesis of branched chain amino acids. ALS resistant crops have primarily been generated through selection for an herbicide insensitive ALS allele from natural or mutagenized cell or plant populations [3]. [Pg.284]

Acetolactate synthase (ALS) is the enzyme target site of the sulfonyl-ureas. In common with the imidazolinone aryl carboxylates, these herbicides inhibit valine and isoleucine biosynthesis. The imidazolinones are exemplified by Assert (8), which consists of a mixture of m- and p-isomers. The selectivity of ALS inhibitors invariably can be accounted for by differential metabolism or uptake or related phenomena rather than by any significant inherent difference in the properties of the ALS enzymes of crop and weed species. Assert is another example of a herbicide activated in plants by deesterification to the phytotoxic acid, and susceptible species such as Avena fatua (wild oat) are unable to metabolize the molecule further. Facile ring-methyl hydroxylation to the m- and p-benzyl alcohols, however, followed by glycosylation confers tolerance to maize and wheat." ... [Pg.294]


See other pages where Crop selectivity, acetolactate synthase is mentioned: [Pg.29]    [Pg.570]    [Pg.32]    [Pg.255]   
See also in sourсe #XX -- [ Pg.118 ]




SEARCH



Acetolactate

Acetolactate synthase

Crop selectivity

© 2024 chempedia.info