Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Critical Effect Dose

They suggested the effect parameter the Critical Effect Dose (CED, a benchmark dose. Section 4.2.5) derived from the dose-response data by regression analysis. This CED was defined as the dose at which the average animal shows the Critical Effect Size (CES) for a particular toxicological endpoint, below which there is no reason for concern. The distribution of the CED can probabilistically be combined with probabilistic distributions of assessment factors for deriving standards... [Pg.290]

Derivation of AEGL-1 (key study, critical effect, dose-exposure concentration, uncertainty factor application and justification, temporal extrapolation, assumptions, confidence, consistency with human data if... [Pg.151]

Derivation of AEGL-2 (key study, critical effect, dose-exposure... [Pg.152]

There are several limitations to tliis approach that must be acknowledged. As mentioned earlier, tlie level of concern does not increase linearly as the reference dose is approached or exceeded because the RfDs do not luive equal accuracy or precision and are not based on the same severity of effects. Moreover, luizm-d quotients are combined for substances with RfDs based on critical effects of vaiy ing toxicological significance. Also, it will often be the case that RfDs of varying levels of confidence Uiat include different uncertainty adjustments and modifying factors will be combined (c.g., extrapolation from animals to hmnans, from LOAELs to NOAELs, or from one exposure duration to anoUier). [Pg.400]

Stages in hazard characterization according to the European Commission s Scientific Steering Committee are (1) establishment of the dose-response relationship for each critical effect (2) identification of the most sensitive species and strain (3) characterization of the mode of action and mechanisms of critical effects (including the possible roles of active metabolites) (4) high to low dose (exposure) extrapolation and interspecies extrapolation and (5) evaluation of factors that can influence severity and duration of adverse health effects. [Pg.570]

However, no studies on fetal exposure are available for setting TEFs. Thus there is a need for dose-response studies of the critical effects, based on synthetic mixtures reflecting the human exposure situation. The WHO TEFs for dioxins, dibenzofurans and PCBs for humans and mammals are given in Table 3. [Pg.408]

The critical effect of intermediate-duration exposure to -hexane in humans is neurotoxicity, specifically peripheral neuropathy. No inhalation MRL was derived for this duration because the reports of neurological effects in humans were predominantly case reports with inadequate documentation of exposure levels or comparison with unexposed groups. A large database on neurological effects in rats exists for this duration however, the design of these experiments precluded documentation of clear dose-response relationships within a single study. Because of the limited database for oral exposure to -hexane and the lack of toxicokinetic data for this route, no MRL was derived for oral exposure to -hexane. [Pg.161]

ATSDR has derived a chronic oral MRL of 0.0003 mg/kg/day based on a laboratory animal study showing neurotoxic effects in dogs (Kettering Lab 1969). The EPA reference dose for endrin is 3xl0 4 mg/kg/day, and the critical dose is 0.025 mg/kg/day (IRIS 1995). Critical effects were occasional convulsions and mild histological lesions in the liver (Kettering Lab 1969). No EPA reference concentration exists for the compound. [Pg.150]

Ratio of the No-Observed-Adverse-Effect Level (NOAEL) for the critical effect to the theoretical, predicted, or estimated exposure dose or concentration. [Pg.6]

Daily Intake (ADI/TDI), or Reference Dose (RfD) these terms are addressed in detail in Chapter 5. As an alternative to the traditional NOAEL approach, the Benchmark Dose (BMD) (a model-derived estimate or its lower conhdence limit of a particular incidence level, see Section 4.2.5) for the critical effect has been proposed for use in the quantitative assessment of the dose-response. [Pg.82]

According to US-EPA s Glossary of IRIS Terms, the critical effect is The first adverse effect, or its known precursor, that occurs to the most sensitive species as the dose rate of an agent increases. ... [Pg.95]

These two definitions reflect two sides of the same situation. In this book, the term critical effect(s) will be used for the hazard/effect considered as being the essential one(s) for the purpose of the risk characterization, e.g., for the establishment of a health-based guidance value, permissible exposure level, or Reference Dose. It should be noted that the critical effect could be a local as well as a systemic effect. It should also be recognized that the critical effect for the establishment of a tolerable exposure level is not necessarily the most severe effect of the chemical substance. For example, although a substance may cause a serious effect such as liver necrosis, the critical effect for the establishment of, e.g., an occupational exposure limit could be a less serious effect such as respiratory tract irritation, because the irritation occurs at a lower exposure level. [Pg.95]

In the first step of the hazard assessment process, aU effects observed are evaluated in terms of the type and severity (adverse or non-adverse), the dose-response relationship, and NOAEL/LOAEL (or alternatively BMD) for every single effect in aU the available studies if data are sufficient, and the relevance for humans of the effects observed in experimental animals. In this last step of the hazard assessment, all this information is assessed as a whole in order to identify the critical effect(s) and to derive a NOAEL, or LOAEL, for the critical effect(s). It is usual to derive a NOAEL on the basis of effects seen in repeated dose toxicity studies and in reproductive toxicity studies. However, for acute toxicity, irritation, and sensitization it is usually not possible to derive a NOAEL because of the design of the studies used to evaluate these effects. For each toxicological endpoint, these aspects are further addressed in Sections 4.4 through 4.10. [Pg.96]

In case a NOAEL cannot be set for the critical effect, a LOAEL is then set and extrapolated to a NOAEL. The extrapolation from a LOAEL to a NOAEL can be regarded as part of the dose-response analysis. Consideration should therefore also be given to the uncertainties in the extrapolation of the LOAEL to the NAEL in cases where only a LOAEL is available as the starting point for the assessment. [Pg.276]

An additional assessment factor, of up to 10, has been apphed in some cases where the NOAEL has been derived for a critical effect, which is considered as a severe and irreversible effect, such as teratogenicity or non-genotoxic carcinogenicity, especially if associated with a shallow dose-response relationship. The principal rationale for an additional factor for nature of toxicity has been to provide a greater margin between the exposure of any particularly susceptible humans and the dose-response curve for such toxicity in experimental animals. [Pg.283]

Dourson et al. (1996) noted that if data are only available from one chronic study on which to base the estimation of a sub-threshold dose, the question could be asked whether data from chronic studies in other species or data from different types of bioassays (e.g., reproductive or developmental toxicity) would yield lower NOAELs. The uncertainty related to this issue must therefore be addressed and, according to the authors, the default approach to address this uncertainty is to apply a 3- or 10-fold UF, based on the assumption that the critical effect can be discovered in a reasonably small selection of toxicity studies. With a reference to some analyses performed within this area, the authors suggested the use of a UF to account for missing bioassays however, the quantification of this UF was considered to require additional work. [Pg.284]

Guidance values are developed from a standard such as, e.g., an Acceptable/Tolerable Daily Intake (ADI/TDI), and Reference Dose/Concentration (RfD/RfC). For threshold effects, the standard is derived by dividing the No-Observed-Adverse-Effect Level (NOAEL) or Lowest-Observed-Adverse-Effect Level (LOAEL), or alternatively a Benchmark Dose (BMD) for the critical effect (s) by an overall assessment factor, described in detail in Chapter 5. For non-threshold effects, the standard is derived by a quantitative assessment, described in detail in Chapter 6. [Pg.355]

Apply target-organ toxicity dose (TTD, see Section 10.5.1.1) modification of the HI method for overlapping targets of toxicity or access any unique critical effect with separate HQ. [Pg.399]

The ERA has calculated a subchronic oral reference dose (RfD) of 7x10 mg/kg/day for carblon tetrachloride based on a NOAEL of 1 mg/kg/day (converted to 0.71 mg/kg/day based on intermittent exposure) for rats in a 12-week study (Bruckner et al. 1986 ERA 1989b IRIS 1993). The critical effect was liver toxicity. A chronic oral RfD of 7x10 mg/kg/day was also calculated based on the same NOAEL used for the subchronic RfD. The ATSDR has calculated an acute inhalation MRL of 0.2 ppm based on a LOAEL of 50 ppm for liver effects in an acute 4-day rat inhalation study (David et al. 1981), and an intermediate inhalation MRL of 0.05 ppm based on a NOAEL of 5 ppm for liver effects in an intermediate-duration (187-192 days) inhalation study in rats (Adams et al. 1952). The ATSDR has also calculated an acute oral MRL of 0.02 mg/kg/day based on a LOAEL of 5 mg/kg/day over 10 days for liver effects in the rat (Smialowicz et al. 1991), and an intermediate oral MRL of 0.007 mg/kg/day based on a NOAEL of 1 mg/kg/day over 12 weeks (converted to 0.71 mg/kg/day based on intermittent exposure) for liver effects in the rat (Bruckner et al. 1986). [Pg.138]

Intravenous administration of low-dose, high-potency agents is also an option in certain clinical situations. For example, i.v. haloperidol, alone or in combination with i.v. lorazepam, has been safe and effective in managing delirium in critically ill, medical patients ( 152, 153). At times, effective doses of haloperidol may be as low as 0.5 to 1 mg when given by this route. Alternatively, droperidol may offer some advantages over haloperidol, including overall efficacy, safety, and rapidity of onset (.154). [Pg.64]


See other pages where Critical Effect Dose is mentioned: [Pg.92]    [Pg.445]    [Pg.92]    [Pg.445]    [Pg.327]    [Pg.349]    [Pg.280]    [Pg.80]    [Pg.107]    [Pg.135]    [Pg.135]    [Pg.278]    [Pg.283]    [Pg.398]    [Pg.224]    [Pg.28]    [Pg.177]    [Pg.545]    [Pg.571]    [Pg.571]    [Pg.436]    [Pg.1571]    [Pg.48]    [Pg.178]    [Pg.53]   
See also in sourсe #XX -- [ Pg.290 ]




SEARCH



Critical dose

Critical effect

Critical effective

Dose effects

Effective dose

© 2024 chempedia.info