Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Crevice corrosion passivating metals

There is often a period before corrosion starts in a crevice in passivating metals. This so-called incubation period corresponds to the time necessary to establish a crevice environment aggressive enough to dissolve the passive oxide layer. The incubation period is well known in stainless steels exposed to waters containing chloride. After a time period in which crevice corrosion is negligible, attack begins, and the rate of metal loss increases (Fig. 2.8). [Pg.20]

ASTM F 746 Standard Test Method for Pitting or Crevice Corrosion of Metallic Surgical Implant Materials Measurement of pitting or crevice tendency by measuring repassivation tendency after polarization at noble potential. Applicable only to passive alloys. [Pg.384]

Titanium is susceptible to pitting and crevice corrosion in aqueous chloride environments. The area of susceptibiUty for several alloys is shown in Figure 7 as a function of temperature and pH. The susceptibiUty depends on pH. The susceptibiUty temperature increases paraboHcaHy from 65°C as pH is increased from 2ero. After the incorporation of noble-metal additions such as in ASTM Grades 7 or 12, crevice corrosion attack is not observed above pH 2 until ca 270°C. Noble alloying elements shift the equiUbrium potential into the passive region where a protective film is formed and maintained. [Pg.104]

Because the film growth rate depends so strongly on the electric field across it (equation 1.115), separation of the anodic and cathodic sites for metals in open circuit is of little consequence, provided film growth is the exclusive reaction. Thus if one site is anodic, and an adjacent site cathodic, film thickening on the anodic site itself causes the two sites to swap roles so that the film on the former cathodic site also thickens correspondingly. Thus the anodic and cathodic sites of the stably passive metal dance over the surface. If however, permanent separation of sites can occur, as for example, where the anodic site has restricted access to the cathodic component in the electrolyte (as in crevice), then breakdown of passivity and associated corrosion can follow. [Pg.131]

It is appropriate to consider first the crevice corrosion of mild steel in oxygenated neutral sodium chloride, and then to consider systems in which the metal is readily passivated. Initially, the whole surface will be in contact with a solution containing oxygen so that attack, with oxygen reduction providing the cathodic process, occurs on both the freely exposed surface and the surface within the crevice (Fig. 1.50). However, whereas the freely exposed surface will be accessible to dissolved oxygen by convection and diffusion, access of oxygen to the solution within the crevice can occur only... [Pg.166]

Since pp of the metal within the crevice is raised by the decrease in pH, the metal is active whereas the outer surface is passive, and this represents the active propagation stage of crevice corrosion there is a significant IR drop between the two zones. [Pg.168]

Under these circumstances the metal s surface within the crevice became active and it corroded with the formation of a yellowish-white corrosion product that was identified as being mainly rutile TiOj. On the other hand, a Ti-0- 13Pd alloy was found to be immune from crevice corrosion, since the presence of the palladium facilitated passivation of the metal surfaces forming the crevice. [Pg.168]

Metals and alloys vary in their ability to resist crevice corrosion, and this applies particularly to those that rely on passivity for their resistance to corrosion. Titanium and high-nickel alloys such as the Inconels and Hastel-loys are amongst the most resistant, but even these will be attacked under highly aggressive environmental conditions. [Pg.169]

The arbitrary division of behaviour has been made because of the extreme behaviour of some chemicals that initiate small areas of attack on a well-passivated metal surface. The form of attack may manifest itself as stress-corrosion cracking, crevice attack or pitting. At certain temperatures and pressures, minute quantities of certain chemicals can result in this form of attack. Chloride ions, in particular, are responsible for many of the failures observed, and it can be present as an impurity in a large number of raw materials. This has led to the development of metals and alloys that can withstand pitting and crevice corrosion, but on the whole these are comparatively expensive. It has become important, therefore, to be able to predict the conditions where more conventional materials may be used. The effect of an increase in concentration on pitting corrosion follows a similar relationship to the Freundlich equation where... [Pg.415]

Although important contributions in the use of electrical measurements in testing have been made by numerous workers it is appropriate here to refer to the work of Stern and his co-workerswho have developed the important concept of linear polarisation, which led to a rapid electrochemical method for determining corrosion rates, both in the laboratory and in plant. Pourbaix and his co-workers on the basis of a purely thermodynamic approach to corrosion constructed potential-pH diagrams for the majority of metal-HjO systems, and by means of a combined thermodynamic and kinetic approach developed a method of predicting the conditions under which a metal will (a) corrode uniformly, (b) pit, (c) passivate or (d) remain immune. Laboratory tests for crevice corrosion and pitting, in which electrochemical measurements are used, are discussed later. [Pg.1004]

The test method ASTM F7464 covers the determination of the resistance to either pitting or crevice corrosion of passive metals and alloys from which surgical implants are produced. The resistance of surgical implants to localized corrosion is carried out in dilute sodium chloride solution under specific conditions of potentiodynamic test method. Typical transient decay curves under potentiostatic polarization should monitor susceptibility to localized corrosion. Alloys are ranked in terms of the critical potential for pitting, the higher (more noble) this potential, the more resistant is to passive film breakdown and to localized corrosion. (Sprowls)14... [Pg.368]

These forms of corrosion are similar to differential aeration corrosion, in that an oxygen-free region becomes acidic by virtue of the net anodic reaction and consequently corrodes rapidly when coupled to a region in aerated solution. However, a key difference is that these forms of corrosion occur on alloys that are initially passive so there is no limit to the area of the passive, cathodic region. Thus, the severity of the attack may be much greater (Fig. 3). Crevice corrosion occurs when there is a narrow gap between two pieces of metal or a piece of metal and an insulator. The oxygen is consumed by the slow passive corrosion in the crevice, causing the crevice to become sufficiently acidic that the passivity breaks down and active corrosion starts. This then... [Pg.552]

For crevices such as in those in socket welds, the metal in the crevice is likely to be anodic. Crevice corrosion and under-deposit corrosion can be serious problems in oxide-stabilized materials such as aluminum and the stainless steels. Crevices and deposits can also accelerate corrosion in metals (such as carbon steel) that do not exhibit both active and passive states. However, the rate of corrosion is much slower in such materials because they lack the galvanic driving force of the active-passive states characteristic of the oxide-stabilized metals and alloys. The anode areas in crevices and under deposits are typically smaller than the cathode areas. This difference accelerates the corrosion rate. [Pg.1562]

Prevention—The methods outlined above to combat crevice corrosion also apply to pitting. Metals that are resistant to pitting should be used as alloying agents their passive films are more protective and more stable to halogen attack. For example, the addition of 2% molybdenum to 18-8 (type 304) stainless steel to produce 316 stainless steel significantly increases pitting resistance. [Pg.1814]

It is in fact the acidification of the occluded crevice solution that triggers the crevice corrosion. The critical acid concentration, < , , for crevice corrosion to occur corresponds to what we call the passivation-depassivation pH, beyond which the metal spontaneously passivates. This critical acidity determines the crevice passivation-depassivation potential, and hence the crevice protection potential Ecrev. The electrode potential actually measured consists of the crevice passivation-depassivation potential, E -ev, and the IR drop, A/iIR, due to the ion migration through the crevice. Assuming the diffusion current from the crevice bottom to the solution outside, we obtain AEm = icmv x h constant, where crcv is the diffusion-controlled metal dissolution current density at the crevice bottom and h is the crevice depth [62], Since anodic metal dissolution at the crevice bottom follows a Tafel relation, we obtain Eciev as a logarithmic function of the crevice depth ... [Pg.569]

In view of this sequence, the crevice geometry parameters of gap width and depth become important. If the gap is sufficiently wide and shallow, oxygen depletion and chloride-ion influx will decrease and metal-ion buildup will be less due to increased diffusion of corrosion products from the crevice. The pH decrease due to hydrolysis of cations will be less, the passive film may be preserved, and if so, crevice corrosion will not occur. These factors are reversed for deep, narrow crevices, and at some critical geometry, crevice corrosion will occur. As with pitting, increased concentration of chloride ions in the environment will increase chloride-ion concentration in the crevice and increase the probability of initiating crevice corrosion. [Pg.330]

Crevice corrosion is often observed in clearances between metals and in places of loose contact between the metal and dielectric (including corrosion resistant materials). Passivating materials and alloys, such as stainless chromium and nickel-chromium steels, aluminum and magnesium alloys are most inclined to crevice corrosion [2,12,13]. [Pg.14]


See other pages where Crevice corrosion passivating metals is mentioned: [Pg.1814]    [Pg.582]    [Pg.353]    [Pg.842]    [Pg.366]    [Pg.11]    [Pg.142]    [Pg.163]    [Pg.165]    [Pg.168]    [Pg.372]    [Pg.463]    [Pg.479]    [Pg.782]    [Pg.22]    [Pg.268]    [Pg.269]    [Pg.74]    [Pg.362]    [Pg.82]    [Pg.1814]    [Pg.284]    [Pg.532]    [Pg.570]    [Pg.571]    [Pg.277]    [Pg.329]    [Pg.330]    [Pg.398]    [Pg.7]    [Pg.13]   
See also in sourсe #XX -- [ Pg.18 ]




SEARCH



Corrosion metals

Corrosion passivation

Corrosion, metallic

Crevice corrosion

Crevices

Metal passivating

Metal passive

Metallic corrosion passivation

Metals passivation

Metals, corrosion passivation

Passivated metals

Passive corrosion

Passivity metals

© 2024 chempedia.info