Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lewis theory covalent bond

An acid is (1) a hydrogen-containing compound that can produce hydrogen ions, (Arrhenius theory) (2) a proton donor (Bronsted-Lowry theory) (3) an atom, ion, or molecule that can accept a pair of electrons to form a covalent bond (Lewis theory). [Pg.1365]

These sequences are appropriate for instructors who prefer to establish background in quantum theory before discussing ionic and covalent bonding, Lewis diagrams, and VSEPR theory. Instructors who prefer to cover these classical bonding topics after quantum mechanics but before MO and VB theory would cover... [Pg.1086]

In Chapter 7, we used valence bond theory to explain bonding in molecules. It accounts, at least qualitatively, for the stability of the covalent bond in terms of the overlap of atomic orbitals. By invoking hybridization, valence bond theory can account for the molecular geometries predicted by electron-pair repulsion. Where Lewis structures are inadequate, as in S02, the concept of resonance allows us to explain the observed properties. [Pg.650]

Lewis s theory of the chemical bond was brilliant, but it was little more than guesswork inspired by insight. Lewis had no way of knowing why an electron pair was so important for the formation of covalent bonds. Valence-bond theory explained the importance of the electron pair in terms of spin-pairing but it could not explain the properties of some molecules. Molecular orbital theory, which is also based on quantum mechanics and was introduced in the late 1920s by Mul-liken and Hund, has proved to be the most successful theory of the chemical bond it overcomes all the deficiencies of Lewis s theory and is easier to use in calculations than valence-bond theory. [Pg.238]

A proton (H+) is an electron pair acceptor. It is therefore a Lewis acid because it can attach to ( accept") a lone pair of electrons on a Lewis base. In other words, a Bronsted acid is a supplier of one particular Lewis acid, a proton. The Lewis theory is more general than the Bronsted-Lowry theory. For instance, metal atoms and ions can act as Lewis acids, as in the formation of Ni(CO)4 from nickel atoms (the Lewis acid) and carbon monoxide (the Lewis base), but they are not Bronsted acids. Likewise, a Bronsted base is a special kind of Lewis base, one that can use a lone pair of electrons to form a coordinate covalent bond to a proton. For instance, an oxide ion is a Lewis base. It forms a coordinate covalent bond to a proton, a Lewis acid, by supplying both the electrons for the bond ... [Pg.518]

Chapter 1 discusses classical models up to and including Lewis s covalent bond model and Kossell s ionic bond model. It reviews ideas that are generally well known and are an important background for understanding later models and theories. Some of these models, particularly the Lewis model, are still in use today, and to appreciate later developments, their limitations need to be clearly and fully understood. [Pg.305]

In the same year that Bronsted and Lowry proposed their definition of acids and bases, an American chemist named Gilbert Lewis proposed an alternative definition that not only encompassed Bronsted-Lowry theory but also accounted for acid-base reactions in which a hydrogen ion isn t exchanged. Lewis s definition relies on tracking lone pairs of electrons. Under his theory, a base is any substance that donates a pair of electrons to form a coordinate covalent bond with another substance, while an acid is a substance that accepts that electron pair in such a reaction. As we explain in Chapter 5, a coordinate covalent bond is a covalent bond in which both of the bonding electrons are donated by one of the atoms forming the bond. [Pg.225]

Lewis structures provide information about what atoms are bonded to each other, and the total electron parrs involved. According to the Lewis theory, an atom will give up, accept or share electrons in order to achieve a filled outer shell that contains eight electrons. The Lewis structure of a covalent molecule shows all the electrons in the valence shell of each atom the bonds between atoms are shown as shared pairs of electrons. Atoms are most... [Pg.21]

What he does not seem to realize is that a perfectly good explanation existed for chemical bonding prior to the advent of the quantum mechanical explanation, namely Lewis s theory whereby pairs of electrons form the bonds between the various atoms in a covalently bonded molecule. Although the quantum mechanical theory provides a more fundamental explanation in terms of exchange energy and so on is undeniable but it also retains the notion of pairs of electrons even if this notion is now augmented by the view that electrons have anti-parallel spins within such pairs. [Pg.69]

At about the same time that Bronsted proposed his acid-base theory, Lewis put forth a broader theory, A base in the Lewis theory is the same as in the Brpnsted one, namely, a compound with an available pair of electrons, either unshared or in a tt orbital. A Lewis acid, however, is any species with a vacant orbital.1115 In a Lewis acid-base reaction the unshared pair of the base forms a covalent bond with the vacant orbital of the acid, as represented by the general equation... [Pg.260]

Before 1927 there was no satisfactory theory of the covalent bond. The chemist had postulated the existence of the valence bond between atoms and had built up a body of empirical information about it, but his inquiries into its structure had been futile. The step taken by Lewis of associating two electrons with a bond can hardly be called the development of a theory, since it left unanswered the fundamental questions as to the nature of the interactions involved and the source of the energy of the bond. Only in 1927 was the development of the theory of the covalent bond initiated by the work o Condon28 and of Hertler and London27 on the hydrogen molecule, described in the following paragraphs. [Pg.23]

Thus, by definition, electrophiles are electron-pair acceptors and nucleophiles are electron-pair donors. These definitions correspond closely to definitions used in the generalized theory of acids and bases proposed by G. N. Lewis (1923). According to Lewis, an acid is any substance that can accept an electron pair, and a base is any substance that can donate an electron pair to form a covalent bond. Therefore acids must be electrophiles and bases must be nucleophiles. For example, the methyl cation may be regarded as a Lewis acid, or an electrophile, because it accepts electrons from reagents such as chloride ion or methanol. In turn, because chloride ion and methanol donate electrons to the methyl cation they are classified as Lewis bases, or nucleophiles ... [Pg.208]

Considerable progress in the development of theoretical and synthetic coordination and organometallic chemistry was made with the use of electron ideas. Lewis elaborated in 1923 the classic electron theory of acids and bases [30], and used it to explain the coordination ideas of Werner [31] (in Ref. 32, this achievement is ascribed to Sidgwick). A Lewis acid (A) is a acceptor of the electron pair and a Lewis base (B) is its donor [33], In other words, A is a species that can form a new covalent bond by accepting a pair of electrons and B is a species that can form a new covalent bond by donating a pair of electrons. The fundamental Lewis acid-base theory is described by a direct equlibrium [Scheme (1.1)], leading to the formation of the adduct (acid-base complex) ... [Pg.5]

If the system contains three electrons, the two occupying 4 will be stabilized, and the other one, localized in XV2, destabilized. Here, the stability of the molecule depends upon the relative energies of 4, Tf, and the AOs thus, HHe dissociates spontaneously, but the three-electron bond in He2+ is moderately robust. Note that, in contradiction with Lewis theory, a covalent bond may be formed with one or three electrons. Electron-deficient bonds (where there are fewer than two electrons per bond) are particularly prevalent amongst boron compounds. [Pg.28]

GVB Generalized valence bond. A theory that employs CF orbitals to calculate electronic structure with wave functions in which the electrons are formally coupled in a covalent manner. The simplest level of the theory is GVB PP (PP-perfect pairing), in which all the electrons are paired into bonds, as in the Lewis structure of the molecule. [Pg.307]


See other pages where Lewis theory covalent bond is mentioned: [Pg.1366]    [Pg.1366]    [Pg.38]    [Pg.42]    [Pg.155]    [Pg.3]    [Pg.144]    [Pg.230]    [Pg.3]    [Pg.3]    [Pg.323]    [Pg.230]    [Pg.152]    [Pg.227]    [Pg.232]    [Pg.249]    [Pg.154]    [Pg.173]    [Pg.3]    [Pg.5]    [Pg.4]    [Pg.7]    [Pg.10]    [Pg.500]    [Pg.258]    [Pg.168]    [Pg.12]    [Pg.179]    [Pg.57]    [Pg.248]    [Pg.2]    [Pg.3]    [Pg.12]    [Pg.30]   
See also in sourсe #XX -- [ Pg.391 , Pg.392 ]




SEARCH



Bond theory

Bonding theories Lewis

Bonding theory

Covalent bonding theory

Covalent bonding theory, Lewis

Covalent bonding theory, Lewis

Lewis bond

Lewis theory

Lewis theory single covalent bond

© 2024 chempedia.info