Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Coumaric acid 3-hydroxylase

KOJIMA, M., TAKEUCHI, W., Detection and Characterization of Para-Coumaric Acid Hydroxylase in Mung Bean, Vigna-Mungo, Seedlings, J. Biochem., 1989, 105, 265-270. [Pg.62]

The PAL activity that is necessary for lignin formation occurs in the cytoplasm or bound to the cytoplasmic surface of the endoplasmic reticulum membranes. The cinnamic acid produced is probably carried on the lipid surface of the membranes, since it is lipophilic, and it is sequentially hydroxylated by the membrane-bound hydroxylases (47,50). In this way there is the possibility of at least a two-step channeling route from phenylalanine to p-coumaric acid. The transmethylases then direct the methyl groups to the meta positions. There is a difference between the transmethylases from angiosperms and those from gymnosperms, since with the latter... [Pg.11]

Figure 3-4. The general phenylpropanoid pathway. The enzymes involved in this pathway are (a) phenylalanine ammonia lyase (PAL E.C. 4.3.1.5), (b) cinnamic acid 4-hydroxylase (C4H E.C. 1.14.13.11), and (J) 4-coumaric acid CoA ligase (4CL E.C. 6.2.1.12). (a) depicts tyrosine ammonia lyase activity in PAL of graminaceous species. The grey structures in the box represent an older version of the phenylpropanoid pathway in which the ring substitution reactions were thought to occur at the level of the hydroxycinnamic acids and/or hydroxycinnamoyl esters. The enzymes involved in these conversions are (c) coumarate 3-hydroxylase (C3H E.C. 1.14.14.1), (d) caffeate O-methyltransferase (COMT EC 2.1.1.68), (e) ferulate 5-hydroxylase (F5H EC 1.14.13), and (g) caffeoyl-CoA O-methyltransferase (CCoA-OMT EC 2.1.1.104). These enzymes are discussed in more detail in Section 10. Figure 3-4. The general phenylpropanoid pathway. The enzymes involved in this pathway are (a) phenylalanine ammonia lyase (PAL E.C. 4.3.1.5), (b) cinnamic acid 4-hydroxylase (C4H E.C. 1.14.13.11), and (J) 4-coumaric acid CoA ligase (4CL E.C. 6.2.1.12). (a) depicts tyrosine ammonia lyase activity in PAL of graminaceous species. The grey structures in the box represent an older version of the phenylpropanoid pathway in which the ring substitution reactions were thought to occur at the level of the hydroxycinnamic acids and/or hydroxycinnamoyl esters. The enzymes involved in these conversions are (c) coumarate 3-hydroxylase (C3H E.C. 1.14.14.1), (d) caffeate O-methyltransferase (COMT EC 2.1.1.68), (e) ferulate 5-hydroxylase (F5H EC 1.14.13), and (g) caffeoyl-CoA O-methyltransferase (CCoA-OMT EC 2.1.1.104). These enzymes are discussed in more detail in Section 10.
The biosynthetic pathway for salicylic acid is not clear. At present, at least two pathways have been proposed. Each branches from phenyl-propanoid biosynthesis after phenylalanine has been converted to trans-cinnamic acid by phenylalanine ammonium lyase (PAL). In one scheme (Pathway 1 Fig. 4), tram-cinnamic acid would be converted to 2-hydroxy cinnamic acid (or 2-coumaric acid) by a cinnamate 2-hydroxylase. This compound could then be converted to salicylic acid via -oxidation possibly through an acetyl coenzyme A (CoA) intermediate. Alternatively, tram-cinnamic acid could be oxidized to benzoic acid and then hydrox-ylated via a postulated o-hydroxylase activity. The details of this pathway, particularly in tobacco and cucumber, deserve further study. [Pg.218]

Phenylalanine ammonia-lyase (PAL) eliminates the amino group from phenylalanine (12) to produce cinnamic acid (13). Cinnamate-4-hydroxylase (C4H) hydroxidizes compound (13) to yield p-coumaric acid (14). 4-CoumaroyhCoA-ligase (4CL) complex catalyzed the conversion of p-coumaric acid (14) and coenzyme A (CoA) to 4-coumaroyl-CoA (15) and 3 moles malonyl-CoA (16). Stilbene synthase (STS) converts these two compounds (15,16) into resveratrol of stilbene (7) (Fig. 3) [23,24],... [Pg.10]

L-Phenylalanine,which is derived via the shikimic acid pathway,is an important precursor for aromatic aroma components. This amino acid can be transformed into phe-nylpyruvate by transamination and by subsequent decarboxylation to 2-phenylacetyl-CoA in an analogous reaction as discussed for leucine and valine. 2-Phenylacetyl-CoA is converted into esters of a variety of alcohols or reduced to 2-phenylethanol and transformed into 2-phenyl-ethyl esters. The end products of phenylalanine catabolism are fumaric acid and acetoacetate which are further metabolized by the TCA-cycle. Phenylalanine ammonia lyase converts the amino acid into cinnamic acid, the key intermediate of phenylpropanoid metabolism. By a series of enzymes (cinnamate-4-hydroxylase, p-coumarate 3-hydroxylase, catechol O-methyltransferase and ferulate 5-hydroxylase) cinnamic acid is transformed into p-couma-ric-, caffeic-, ferulic-, 5-hydroxyferulic- and sinapic acids,which act as precursors for flavor components and are important intermediates in the biosynthesis of fla-vonoides, lignins, etc. Reduction of cinnamic acids to aldehydes and alcohols by cinnamoyl-CoA NADPH-oxido-reductase and cinnamoyl-alcohol-dehydrogenase form important flavor compounds such as cinnamic aldehyde, cin-namyl alcohol and esters. Further reduction of cinnamyl alcohols lead to propenyl- and allylphenols such as... [Pg.129]

Figure 4 Current view of the phenylpropanoid pathway to the monolignols 19-23. 4CL, 4-hydroxycinnamate coenzyme Aligases pC3H , p-coumarate 3-hydroxylase C4H, cinnamate 4-hydroxylase CAD, cinnamyl alcohol dehydrogenases CCOMT, hydroxycinnamoyl CoA O-methyltransferases CCR, cinnamoyl-CoA oxidoreductases COMT, caffeic acid O-methyltransferases F5H , ferulate 5-hydroxylase HCT, hydroxycinnamoyl-CoA shikimate hydroxycinnamoyltransferase HOT, hydroxycinnamoyl-CoA quinate hydroxycinnamoyltransferase PAL, phenylalanine ammonia lyase TAL, tyrosine ammonia lyase. Figure 4 Current view of the phenylpropanoid pathway to the monolignols 19-23. 4CL, 4-hydroxycinnamate coenzyme Aligases pC3H , p-coumarate 3-hydroxylase C4H, cinnamate 4-hydroxylase CAD, cinnamyl alcohol dehydrogenases CCOMT, hydroxycinnamoyl CoA O-methyltransferases CCR, cinnamoyl-CoA oxidoreductases COMT, caffeic acid O-methyltransferases F5H , ferulate 5-hydroxylase HCT, hydroxycinnamoyl-CoA shikimate hydroxycinnamoyltransferase HOT, hydroxycinnamoyl-CoA quinate hydroxycinnamoyltransferase PAL, phenylalanine ammonia lyase TAL, tyrosine ammonia lyase.
Cinnamate 4-hydroxylases catalyze the hydroxylation of frans-cinnamic acid into trans-p-coumaric acid. The ability to monitor this enzyme activity in Jerusalem artichoke allowed isolation of the P450 enzyme CYP73A1 using conventional chromatography and generation of specific antibodies . ... [Pg.557]

The biosynthetic pathway for isoflavonoids in soybean and the relationship of the isoflavonoids to several other classes of phenylpropanoids is presented in Fig. 8.2. Production of /i-coumaryl-CoA from phenylalanine requires phenylalanine ammonia lyase to convert phenylalanine to cinnamate, cinnamic acid hydroxylase to convert cinnamate to /7-coumarate, and coumaraterCoA ligase to convert jt -coumarate to -coumaroyl-CoA. Lignins may be produced from j3-coumaroyl-CoA or from />-coumarate. Chalcone synthase catalyzes the condensation of three molecules of malonyl CoA with p-coumaroyl-CoA to form 4, 2 , 4 , 6 -tetrahydroxychalcone, which is subsequently isomerized in a reaction catalyzed by chalcone isomerase to naringenin, the precursor to genistein, flavones, flavonols, condensed tannins, anthocyanins, and others. [Pg.157]

Figure 3. Proposed pathways to AA precursors. A) 3,4-dihydroxybenzaldehyde (3,4-DHBA) biosynthesis depicting the two possible routes from/ -coumaric acid to form 3,4-DHBA the oxidative ferulate and the non-oxidative benzoate pathways B) Tyramine biosynthesis. Arrows without labeling reflect chemical reactions that have not been enzymatically characterized. Enzymes that have been cloned, characterized and identified are labeled in black bold. Enzyme abbreviations PAL, phenylalanine ammonia -lyase C4H, cinnamate 4-hydroxylase C3H, coumarate 3-hydroxylase HBS, 4-hydroxybenzaldehyde synthase TYDC, tyrosine decarboxylase. Figure 3. Proposed pathways to AA precursors. A) 3,4-dihydroxybenzaldehyde (3,4-DHBA) biosynthesis depicting the two possible routes from/ -coumaric acid to form 3,4-DHBA the oxidative ferulate and the non-oxidative benzoate pathways B) Tyramine biosynthesis. Arrows without labeling reflect chemical reactions that have not been enzymatically characterized. Enzymes that have been cloned, characterized and identified are labeled in black bold. Enzyme abbreviations PAL, phenylalanine ammonia -lyase C4H, cinnamate 4-hydroxylase C3H, coumarate 3-hydroxylase HBS, 4-hydroxybenzaldehyde synthase TYDC, tyrosine decarboxylase.
The first step of flavonone biosynthesis begins with the deamination of the amino acid phenylalanine or tyrosine by a phenylalanine ammonia-lyase (PAL) or a tyrosine ammonia-lyase (TAL), which affords cinnamic acid and p-coumaric acid, respectively (Figure 6.36). The formed cinnamic acid is first hydroxylated to p-coumaric acid by a membrane-bound P450 monooxygenase, cinnamate 4-hydroxylase (C4H), and then activated to p-coumaroyl-CoA by a 4-coumarate-CoA ligase (4CL). 4CL catalyzes also the conversion of caffeic acid, feruhc acid, and cinnamic acid to caffeoyl-CoA, feruloyl-CoA, and cinnamoyl-CoA, respectively. [Pg.577]

Some relatively nonspecific enzymatic formation of caffeic (12), ferulic (13), and synapic (14) acids has been noted (Davin et al., 1992). Monooxygenases of microsomal fractions appear to be involved. For example, a specific p-coum-arate-3-hydroxylase has been isolated from mung beans. However, other work suggests that the carboxyl group of p-coumaric acid must be esterified as a quinic acid ester before... [Pg.108]

The amino acid phenylalanine is derived from gallic acid, being this compound biosynthesized in the shikimic acid metabolic route. Most of the phenolic compounds from higher plants are also derived from this amino acid, formed in the phenylpropanoid metabolic route, in the cell cytoplasm, being various enzymes involved in this metabolism. Phenylalanine ammonia lyase interacts with phenylalanine forming cinnamic acid, that is, hydrolyzed by citmamate-4-hydroxylase, rendering p-coumaric acid. Different hydroxylations and/or methoxylations, of this... [Pg.1808]

Resveratrol biosynthesis branches from the phenylpropanoid pathway. The resveratrol biosynthesis pathway consists of four enzymesrphenylalanine ammonia lyase (PAL), cinnamic acid 4-hydroxylase (C4H), 4-coumarate CoA ligase (4CL), and stilbene synthase (STS). The first two enzymes of the pathway, PAL and C4H, convert phenylalanine into /)-coumaric acid. The third enzyme, 4CL, attaches /)-coumaric acid to the pantetheine group of coenzyme-A (CoA) to produce 4-coumaroyl-CoA. The fourth enzyme, STS, catalyzes the condensation of resveratrol from one molecule of 4-coumaroyl-CoA and three molecules of malonyl-CoA, which originate from fatty acid biosynthesis. TAL is homologous to PAL and converts the amino acid tyrosine directly into / -coumaric acid. Methylated resveratrol derivatives of pinostilbene and pterostilbene are produced by resveratrol O-methyltransferase (ROMT) from resveratrol [135] (Figure 10.10). [Pg.324]

Phenylpropanoids are biologically synthesized from phenylalanine as described above. Among them, cinnamic acid is synthesized directly from phenylalanine by phenylalanine ammonia-liase (PAL), and p-hydroxycinnamic acid p-coumaric acid) is synthesized from cinnamic acid by cinnamic acid 4-hydroxylase (C4H, an enzyme in the cytochrome P-450 family).The phenylpropanoid metabolic pathway is important for plants to synthesize lignin, and some phenylpropanoids are seen at junctions of cell wall polysaccharides such as hemicellulose and pectin. [Pg.40]

An alternate fate of the products of photosynthesis that are channeled through the shikimate pathway is for 3-dehydroshikitnic acid to be directed to L-phenylalanine and so enter the phenylpropanoid pathway (Figure 1.15). Phenylalanine ammonia-lyase catalyses the first step in this pathway, the conversion of L-phenylalanine to cinnamic acid, which in a reaction catalysed by cinnamate 4-hydroxylase is converted to p-coumaric acid which in turn is metabolized to p-coumaroyl-CoA by p-coumarate CoA ligase. Cinnamic add is... [Pg.16]

Coumaroyl-CoA is produced from the amino acid phenylalanine by what has been termed the general phenylpropanoid pathway, through three enzymatic conversions catalyzed by phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase (C4H), and 4-coumarate CoA ligase (4CL). Malonyl-CoA is formed from acetyl-CoA by acetyl-CoA carboxylase (ACC) (Figure 3.2). Acetyl-CoA may be produced in mitochondria, plastids, peroxisomes, and the cytosol by a variety of routes. It is the cytosolic acetyl-CoA that is used for flavonoid biosynthesis, and it is produced by the multiple subunit enzyme ATP-citrate lyase that converts citrate, ATP, and Co-A to acetyl-CoA, oxaloacetate, ADP, and inorganic phosphate. ... [Pg.151]


See other pages where Coumaric acid 3-hydroxylase is mentioned: [Pg.11]    [Pg.277]    [Pg.117]    [Pg.11]    [Pg.206]    [Pg.84]    [Pg.86]    [Pg.492]    [Pg.277]    [Pg.569]    [Pg.441]    [Pg.182]    [Pg.185]    [Pg.200]    [Pg.569]    [Pg.571]    [Pg.48]    [Pg.58]    [Pg.58]    [Pg.55]    [Pg.92]    [Pg.159]    [Pg.140]    [Pg.291]    [Pg.1654]    [Pg.826]    [Pg.202]    [Pg.17]    [Pg.117]    [Pg.172]    [Pg.183]   
See also in sourсe #XX -- [ Pg.85 , Pg.86 , Pg.87 , Pg.87 ]




SEARCH



4-Coumarate 3-hydroxylase

Coumarate/coumaric acid

Coumaric acid

© 2024 chempedia.info