Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Coulometry controlled-current method

Different electrochemical techniques depend on whether they are bulk methods as in conductometry or interfacial methods. The latter may be static as in potentiometry or dynamic. Dynamic methods are classified on the basis of the current used. Conductometry uses a constant current but controlled current methods include voltametry, amperometry and coulometry. [Pg.31]

The largest division of interfacial electrochemical methods is the group of dynamic methods, in which current flows and concentrations change as the result of a redox reaction. Dynamic methods are further subdivided by whether we choose to control the current or the potential. In controlled-current coulometry, which is covered in Section IIC, we completely oxidize or reduce the analyte by passing a fixed current through the analytical solution. Controlled-potential methods are subdivided further into controlled-potential coulometry and amperometry, in which a constant potential is applied during the analysis, and voltammetry, in which the potential is systematically varied. Controlled-potential coulometry is discussed in Section IIC, and amperometry and voltammetry are discussed in Section IID. [Pg.462]

Coulometric methods of analysis are based on an exhaustive electrolysis of the analyte. By exhaustive we mean that the analyte is quantitatively oxidized or reduced at the working electrode or reacts quantitatively with a reagent generated at the working electrode. There are two forms of coulometry controlled-potential coulometry, in which a constant potential is applied to the electrochemical cell, and controlled-current coulometry, in which a constant current is passed through the electrochemical cell. [Pg.496]

A second approach to coulometry is to use a constant current in place of a constant potential (Figure 11.23). Controlled-current coulometry, also known as amperostatic coulometry or coulometric titrimetry, has two advantages over controlled-potential coulometry. First, using a constant current makes for a more rapid analysis since the current does not decrease over time. Thus, a typical analysis time for controlled-current coulometry is less than 10 min, as opposed to approximately 30-60 min for controlled-potential coulometry. Second, with a constant current the total charge is simply the product of current and time (equation 11.24). A method for integrating the current-time curve, therefore, is not necessary. [Pg.499]

Coulometry may be used for the quantitative analysis of both inorganic and organic compounds. Examples of controlled-potential and controlled-current coulometric methods are discussed in the following sections. [Pg.501]

Controllcd-Currcnt Coulomctry The use of a mediator makes controlled-current coulometry a more versatile analytical method than controlled-potential coulome-try. For example, the direct oxidation or reduction of a protein at the working electrode in controlled-potential coulometry is difficult if the protein s active redox site lies deep within its structure. The controlled-current coulometric analysis of the protein is made possible, however, by coupling its oxidation or reduction to a mediator that is reduced or oxidized at the working electrode. Controlled-current coulometric methods have been developed for many of the same analytes that may be determined by conventional redox titrimetry. These methods, several of which are summarized in Table 11.9, also are called coulometric redox titrations. [Pg.503]

Scale of Operation Coulometric methods of analysis can be used to analyze small absolute amounts of analyte. In controlled-current coulometry, for example, the moles of analyte consumed during an exhaustive electrolysis is given by equation 11.32. An electrolysis carried out with a constant current of 100 pA for 100 s, therefore, consumes only 1 X 10 mol of analyte if = 1. For an analyte with a molecular weight of 100 g/mol, 1 X 10 mol corresponds to only 10 pg. The concentration of analyte in the electrochemical cell, however, must be sufficient to allow an accurate determination of the end point. When using visual end points, coulometric titrations require solution concentrations greater than 10 M and, as with conventional titrations, are limited to major and minor analytes. A coulometric titration to a preset potentiometric end point is feasible even with solution concentrations of 10 M, making possible the analysis of trace analytes. [Pg.507]

The way in which these alternatives with their particular measuring characteristics are carried out can be best described by (1) controlled-potential coulometry and (2) coulometric titration (controlled-current coulometry). Both methods require an accurate measurement of the number of coulombs consumed, for which the following instrumental possibilities are available (a) chemical coulometers, (b) electrochemical coulometers and (c) electronic coulometers. [Pg.233]

Now returning to the coulometric analysis proper we can. say that any determination that can be carried out by voltammetry is also possible by coulometry whether it should be done by means of the controlled-potential or the titration (constant-current) method much depends on the electrochemical properties of the analyte itself and on additional circumstances both methods, because they are based on bulk electrolysis, require continuous stirring. [Pg.234]

A method that completely electrolyzes the substances under study is used in electrogravimetry and coulometry. The method is also useful in electrolytic separations and electrolytic syntheses. Electrolysis is carried out either at a controlled potential or at a controlled current. [Pg.143]

In coulometry, the analyte is quantitatively electrolyzed and, from the quantity of electricity (in coulombs) consumed in the electrolysis, the amount of analyte is calculated using Faraday s law, where the Faraday constant is 9.6485309 xlO4 C mol-1. Coulometry is classified into controlled-potential (or potentiostatic) coulometry and controlled-current (or galvanostatic) coulometry, based on the methods of electrolysis [19, 20]. [Pg.146]

Coulometry employs either a constant current or a controlled potential. Constant-current methods, like the preceding Br2/cyclohexene example, are called coulometric titrations. If we know the current and the time of reaction, we know how many coulombs have been delivered from Equation 17-2 q = / t. [Pg.357]

Galus Z (1994) Eundamentals of electrochemical antilysis, 2nd edn. Harwood, Chichester Delahay P (1954) New instrumental methods in electrochemistry. Wiley, New York Macdonald DD (1977) Transient techniques in electrochemistry. Plenum, New York Janata J, Mark HB Jr (1969) Application of controlled-current coulometry to reaction kinetics. In Bard AJ (ed) Electroanalytical chemistry, vol 3. Mtircel Dekker, New York, pp 1-56 Harrar JE (1975) Techniques, apparatus, and aneilytical appUcations of controlled-potentitil coulometry. In Bard AJ (ed) Electroanalytical chemistry, vol 8. Marcel Dekker, New York, pp 2-167... [Pg.157]

Controlled-current coulometry uses a constant current. which passes through a cell until an indicator signals completion of the analytical reaction. The quantity of charge required to reach the end point is then calcuiated from the magnitude of the current and the time that the current passes. This method has enjoyed wider application than potentiostatic coulometry. It is frequently called a coulometric titration for reasons that we discuss in Section 24D. [Pg.886]

Minimizing Electrolysis Time The current-time curve for controlled-potential coulometry in Figure 11.20 shows that the current decreases continuously throughout electrolysis. An exhaustive electrolysis, therefore, may require a long time. Since time is an important consideration in choosing and designing analytical methods, the factors that determine the analysis time need to be considered. [Pg.498]

In controlled-potential coulometry the total number of coulombs consumed in an electrolysis is used to determine the amount of substance electrolyzed. To enable a coulometric method, the electrode reaction must satisfy the following requirements (a) it must be of known stoichiometry (b) it must be a single reaction or at least have no side reactions of different stoichiometry (c) it must occur with close to 100% current efficiency. [Pg.427]

There are essentially two different coulometric processes, namely potentio-static and galvanostatic coulometry. The former functions with constant, controlled electrode potential, whereas the galvanostatic method - also called coulometric titration - functions with constant current strength and uncontrolled potential. Fig. 13 shows the basic circuit diagram for potentiostatic coulometry. [Pg.76]

In coulometry, the analyte in the sample volume is exhausted completely. This distinguishes the method from amperometry or voltammetry where the level of current is measured, which is controlled by the concentration through its influence on the rate of... [Pg.811]

Coulometry. Two methods of coulometry are used coulometry at controlled potential and coulometric titrations. The main advantage of the coulometric method is the elimination of the necessity of standardization as the Faraday constant is a standard. In analysis of complicated samples encountered in environmental analysis the coulometric titrations are more advantageous where 100% current efficiency can be more readily attained by suitable choice of the reagent-solvent system. Coulometric titrations are suitable for determining the amount of substance in the range 0.01 to 100 mg (and sometimes below 1 iJg). Under optimum conditions these titrations can be carried out with a precision and accuracy of 0.01%. Automatic coulometric analyzers for the determination of gaseous pollutants (SO2, O3, NO, etc.) have proven to be useful in environmental chemistry. [Pg.106]

A complete system providing both a sensor and an actuator would be ideal in the field of process control, but because of a lack of truly reliable chemical sensors on the market the concept has not been widely implemented. One exception relates to the analytical method of coulometry, a technique that offers great potential for delivering chemical compounds to a controlled reaction. Especially attractive in this context is the method of constant- current coulometry, which can be carried out with an end-point sensor and a coulomet-ric actuator for maintaining a generator current until the end-point has been reached. In this case both of the required devices can be miniaturized and constructed with the same technology. [Pg.1052]

Coulometry, milli- and microcouIometry< ) are also used for the determination of the number of electrons transferred. In these methods the quantity of electricity necessary to reduce a distinct amount of the substance is measured at the potential of the limiting current, controlled by a potentiostat. Coulometric methods are usually not very accurate, and sometimes side reactions occur when electrodes of constant surface are used instead of a dropping electrode. An insufficient separation of cathodic and anodic spacing can also cause complications. Coulometric methods are thus best suited for systems, where n = 1 or 2, but for higher numbers of electrons transferred, the decision is often difficult. [Pg.53]


See other pages where Coulometry controlled-current method is mentioned: [Pg.499]    [Pg.38]    [Pg.270]    [Pg.476]    [Pg.491]    [Pg.413]    [Pg.464]    [Pg.497]    [Pg.498]    [Pg.234]    [Pg.334]    [Pg.340]    [Pg.5]    [Pg.254]    [Pg.255]    [Pg.133]    [Pg.853]    [Pg.362]    [Pg.85]    [Pg.341]    [Pg.342]    [Pg.934]    [Pg.811]    [Pg.1059]    [Pg.276]    [Pg.886]    [Pg.7]   
See also in sourсe #XX -- [ Pg.147 ]




SEARCH



Control methods

Controlled current methods,

Controlled-current

Controlled-current coulometry

Coulometry

Coulometry controlled-current coulometrys

Current methods

© 2024 chempedia.info