Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Corrosion anodic protection against

Six caustic soda evaporators were anodically protected against stress corrosion in the aluminum industry in Germany in 1965 [27]. Each evaporator had an internal surface area of 2400 m. The transformer-rectifier had a capacity of 300 AJ 5 V and was operated intermittently for many years. Automatic switching on of the protection current only took place in case of need when the drop in potential reached... [Pg.481]

The main cause of anode wear is electrochemical oxidation or sulfur attack of anodic surfaces. As copper is not sufficiently resistant to this type of attack, thin caps of oxidation and sulfur-resistant material, such as platinum, are bra2ed to the surface, as shown in Eigure 15a. The thick platinum reinforcement at the upstream corner protects against excessive erosion where Hall effect-induced current concentrations occur, and the interelectrode cap protects the upstream edge from anodic corrosion caused by interelectrode current leakage. The tungsten undedayment protects the copper substrate in case the platinum cladding fails. [Pg.429]

The annular space between the outer pipe and the surrounding rock is filled with cement over the whole depth up to the ground in new wells. The purpose of this is to seal the deposits at the top and to keep the fresh water and salt water zones separate. In addition, it serves as a protection against pressure from the rock and as corrosion protection which, however, is only effective so long as there is no current exit caused by extended corrosion of cells or due to foreign anodic influences. The cement Ailing of the borehole casing is usually not uniformly spread over the pipe surface. It has to be remembered that there can be sections which are either not covered or are only thinly covered with cement. [Pg.415]

Stress corrosion can arise in plain carbon and low-alloy steels if critical conditions of temperature, concentration and potential in hot alkali solutions are present (see Section 2.3.3). The critical potential range for stress corrosion is shown in Fig. 2-18. This potential range corresponds to the active/passive transition. Theoretically, anodic protection as well as cathodic protection would be possible (see Section 2.4) however, in the active condition, noticeable negligible dissolution of the steel occurs due to the formation of FeO ions. Therefore, the anodic protection method was chosen for protecting a water electrolysis plant operating with caustic potash solution against stress corrosion [30]. The protection current was provided by the electrolytic cells of the plant. [Pg.481]

Spiral-plate exchangers are fabricated from any material that can be cold worked and welded. Materials commonly used include carbo steel, stainless steel, nickel and nickel alloys, titanium, Hastelloys, and copper alloys. Baked phenolic-resin coatings are sometimes applied. Electrodes can also be wound into the assembly to anodically protect surfaces against corrosion. [Pg.36]

The anodic oxidation of magnesium does not normally produce a film that has sufficient corrosion resistance to withstand exposure without further protection by painting, and the solutions used are complex mixtures containing phosphates, fluorides and chromates. In the case of aluminium, a relatively simple treatment produces a hard, compact, strongly adherent film of oxide, which affords considerably increased protection against corrosive attack . [Pg.687]

Since the natural passivity of aluminium is due to the thin film of oxide formed by the action of the atmosphere, it is not unexpected that the thicker films formed by anodic oxidation afford considerable protection against corrosive influences, provided the oxide layer is continuous, and free from macropores. The protective action of the film is considerably enhanced by effective sealing, which plugs the mouths of the micropores formed in the normal course of anodising with hydrated oxide, and still further improvement may be afforded by the incorporation of corrosion inhibitors, such as dichromates, in the sealing solution. Chromic acid films, in spite of their thinness, show good corrosion resistance. [Pg.697]

Electroplating of one metal onto another is widely used for protection against corrosion and wear or for cosmetic purposes.16 Again, the source of metal for deposition could be anodic dissolution or a prepared solution with an inert anode. In contrast to electrolytic refining, only a very thin layer (typically on the order of 1 to 10 pm) of the plating metal is wanted, but usually this layer must be uniform, cohesive, and nonporous, and often a shiny appearance is desired. To understand the roles of some of the variables in electroplating, it is useful to consider the electrodeposition... [Pg.320]

Other important metal finishings to protect against corrosion are conversion coatings such as anodization (especially for aluminium), electroless plating, and electrophoretic painting. The first is done to form a passive layer, and is described in greater detail in Section 16.4. [Pg.344]

Fig. 24.6. Inside an acid cooler. Fig. 9.5 gives an external view. Tubes start through the tube sheet , shown here. They extend almost to the far end of the cooler where there is another tube sheet . Cool water enters at this end and flows through the tubes to the far end. Between the tube sheets , the tubes are surrounded by warm acid moving turbulently around them. Heat transfers from the warm acid to the cool water (through the tube walls). The tube entering from the right contains a thermocouple. The polymer tubes in the foreground surround metal rods. The rods are bare between the tube sheets. An electrical potential applied between them and the water tubes anodically protects the tubes against acid side corrosion. Fig. 24.6. Inside an acid cooler. Fig. 9.5 gives an external view. Tubes start through the tube sheet , shown here. They extend almost to the far end of the cooler where there is another tube sheet . Cool water enters at this end and flows through the tubes to the far end. Between the tube sheets , the tubes are surrounded by warm acid moving turbulently around them. Heat transfers from the warm acid to the cool water (through the tube walls). The tube entering from the right contains a thermocouple. The polymer tubes in the foreground surround metal rods. The rods are bare between the tube sheets. An electrical potential applied between them and the water tubes anodically protects the tubes against acid side corrosion.
A nickel anode is in alkaline solution protected against corrosion by a layer of nickel oxides. oxide (NiOOH) is capable of oxidizing a number of functional groups primary alcohols may be oxidized to carboxylic acids [158-161], which is of interest for the technical production of an intermediate for vitamin C production [162]. NiOOH chemically oxidizes the substrate and is regenerated electrochemically a large anode surface, which is realized in the Swiss-roll cell (Chap. 31), is thus advantageous. NiOOH electrodes in form of nickel foam electrodes has been found to be useful for the oxidation of diacetone L-sorbose to diacetone 2-keto-L-gulonic acid in the vitamin C synthesis [163]. [Pg.244]

Which of the following metals are suitable for use as sacrificial anodes to protect against corrosion of underground iron pipes If any are not suitable, explain why ... [Pg.731]

Anodic protection has been effectively used to control corrosion by sulfuric acid for many years [4]. It has been used effectively to protect carbon steel against 10 to 45% solutions of sodium hydroxide at 25 to 60 °C. When sodium chlorate, chloride. [Pg.399]

Aluminum is often used for control panels of appliances. The thin film of aluminum oxide that forms readily on exposure to air gives protection against corrosion. Surface treatments such as anodizing and cladding help to further corrosion resistance. [Pg.307]


See other pages where Corrosion anodic protection against is mentioned: [Pg.110]    [Pg.486]    [Pg.503]    [Pg.110]    [Pg.629]    [Pg.486]    [Pg.503]    [Pg.35]    [Pg.432]    [Pg.11]    [Pg.14]    [Pg.17]    [Pg.17]    [Pg.1216]    [Pg.235]    [Pg.725]    [Pg.209]    [Pg.1412]    [Pg.91]    [Pg.1775]    [Pg.1858]    [Pg.100]    [Pg.416]    [Pg.196]    [Pg.253]    [Pg.270]    [Pg.54]    [Pg.117]    [Pg.35]    [Pg.185]    [Pg.51]    [Pg.399]    [Pg.646]   


SEARCH



Anode protection

Anodic corrosion

Anodic protection

© 2024 chempedia.info