Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Correlation-sensitive molecules

It is clear that the inclusion of correlation at appropriate levels accounts for virtually all the disagreement between theory and experiment found at the Hartree-Fock level in correlation-sensitive molecules. It remains to be seen how efficiently some of the advanced post-Hartree-Fock methods can be implemented to handle larger molecules. One of the major advantages of density functional theory is its speed relative to conventional quantum mechanical methods. If it can be extended to give somewhat better agreement with experiment, it may well be the method of choice for treating large chemical systems in the near future. [Pg.248]

Although the antibacterial spectmm is similar for many of the sulfas, chemical modifications of the parent molecule have produced compounds with a variety of absorption, metaboHsm, tissue distribution, and excretion characteristics. Administration is typically oral or by injection. When absorbed, they tend to distribute widely in the body, be metabolized by the Hver, and excreted in the urine. Toxic reactions or untoward side effects have been characterized as blood dyscrasias crystal deposition in the kidneys, especially with insufficient urinary output and allergic sensitization. Selection of organisms resistant to the sulfonamides has been observed, but has not been correlated with cross-resistance to other antibiotic families (see Antibacterial AGENTS, synthetic-sulfonamides). [Pg.403]

SALI compares fiivorably with other major surface analytical techniques in terms of sensitivity and spatial resolution. Its major advantj e is the combination of analytical versatility, ease of quantification, and sensitivity. Table 1 compares the analytical characteristics of SALI to four major surfiice spectroscopic techniques.These techniques can also be categorized by the chemical information they provide. Both SALI and SIMS (static mode only) can provide molecular fingerprint information via mass spectra that give mass peaks corresponding to structural units of the molecule, while XPS provides only short-range chemical information. XPS and static SIMS are often used to complement each other since XPS chemical speciation information is semiquantitative however, SALI molecular information can potentially be quantified direedy without correlation with another surface spectroscopic technique. AES and Rutherford Backscattering (RBS) provide primarily elemental information, and therefore yield litde structural informadon. The common detection limit refers to the sensitivity for nearly all elements that these techniques enjoy. [Pg.560]

In the next section we derive the Taylor expansion of the coupled cluster cubic response function in its frequency arguments and the equations for the required expansions of the cluster amplitude and Lagrangian multiplier responses. For the experimentally important isotropic averages 7, 7i and yx we give explicit expressions for the A and higher-order coefficients in terms of the coefficients of the Taylor series. In Sec. 4 we present an application of the developed approach to the second hyperpolarizability of the methane molecule. We test the convergence of the hyperpolarizabilities with respect to the order of the expansion and investigate the sensitivity of the coefficients to basis sets and correlation treatment. The results are compared with dispersion coefficients derived by least square fits to experimental hyperpolarizability data or to pointwise calculated hyperpolarizabilities of other ab inito studies. [Pg.114]

A related experiment TOCSY (Total Correlation Spectroscopy) gives similar information and is relatively more sensitive than the REIAY. On the other hand, intensity of cross peak in a NOESY spectrum with a short mixing time is a measure of internuclear distance (less than 4A). It depends on the correlation time and varies as . It is positive for small molecules with short correlation time (o r <<1) and is negative for macromolecules with long correlation time (wr >>l) and goes through zero for molecules with 1 Relaxation effects should be taken into consideration for quantitative interpretation of NOE intensities, however. [Pg.294]

Schwille, P., Korkach, J. and Webb, W. W. (1999) Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes. Cytometry, 36, 176-182. [Pg.237]

Bendiak, B. Sensitive through-space dipolar correlations between nuclei of small organic molecules by partial alignment in a deuterated liquid solvent. J. Am. Chem. Soc. 2002, 124,... [Pg.248]

There may, however, be a number of other reasons to pursue a predictive first principles theory of Mossbauer spectroscopy. For example, one may want to elucidate structure/spectroscopy correlations in the cleanest way. To this end one may construct in the computer a number of models with systematic variations in oxidation states, spin states, coordination numbers, and identity of hgands to name only a few chemical degrees of freedom. In such studies it is immaterial whether these molecules have been made or could be made what matters is that one can find out which structural details the Mossbauer parameters are most sensitive to. This can provide insight into the effects of geometry or covalency that are very difficult to obtain by any other means. [Pg.138]

Numerous quantum mechanic calculations have been carried out to better understand the bonding of nitrogen oxide on transition metal surfaces. For instance, the group of Sautet et al have reported a comparative density-functional theory (DFT) study of the chemisorption and dissociation of NO molecules on the close-packed (111), the more open (100), and the stepped (511) surfaces of palladium and rhodium to estimate both energetics and kinetics of the reaction pathways [75], The structure sensitivity of the adsorption was found to correlate well with catalytic activity, as estimated from the calculated dissociation rate constants at 300 K. The latter were found to agree with numerous experimental observations, with (111) facets rather inactive towards NO dissociation and stepped surfaces far more active, and to follow the sequence Rh(100) > terraces in Rh(511) > steps in Rh(511) > steps in Pd(511) > Rh(lll) > Pd(100) > terraces in Pd (511) > Pd (111). The effect of the steps on activity was found to be clearly favorable on the Pd(511) surface but unfavorable on the Rh(511) surface, perhaps explaining the difference in activity between the two metals. The influence of... [Pg.85]


See other pages where Correlation-sensitive molecules is mentioned: [Pg.120]    [Pg.120]    [Pg.195]    [Pg.120]    [Pg.29]    [Pg.134]    [Pg.396]    [Pg.265]    [Pg.147]    [Pg.159]    [Pg.166]    [Pg.2494]    [Pg.46]    [Pg.110]    [Pg.407]    [Pg.276]    [Pg.152]    [Pg.79]    [Pg.45]    [Pg.119]    [Pg.9]    [Pg.207]    [Pg.155]    [Pg.357]    [Pg.222]    [Pg.317]    [Pg.415]    [Pg.194]    [Pg.210]    [Pg.217]    [Pg.273]    [Pg.331]    [Pg.227]    [Pg.549]    [Pg.162]    [Pg.458]    [Pg.121]    [Pg.130]    [Pg.92]    [Pg.97]    [Pg.28]   


SEARCH



Sensitizing molecule

© 2024 chempedia.info