Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Model correlation function

Instead of representing the model line profile T(center frequency, an ad hoc correlation function model is constructed whose Fourier transform suggests a representation of the line profiles by three functions which are shifted relative to the center frequency,... [Pg.347]

Figure 4E.3. Sketch showing the orientation correlation function model. Figure 4E.3. Sketch showing the orientation correlation function model.
Molecular Dynamics-Derived Correlation Function Models... [Pg.367]

The correlation functions provide an alternate route to the equilibrium properties of classical fluids. In particular, the two-particle correlation fimction of a system with a pairwise additive potential detemrines all of its themiodynamic properties. It also detemrines the compressibility of systems witir even more complex tliree-body and higher-order interactions. The pair correlation fiinctions are easier to approximate than the PFs to which they are related they can also be obtained, in principle, from x-ray or neutron diffraction experiments. This provides a useful perspective of fluid stmcture, and enables Hamiltonian models and approximations for the equilibrium stmcture of fluids and solutions to be tested by direct comparison with the experimentally detennined correlation fiinctions. We discuss the basic relations for the correlation fiinctions in the canonical and grand canonical ensembles before considering applications to model systems. [Pg.465]

Hi) Gaussian statistics. Chandler [39] has discussed a model for fluids in which the probability P(N,v) of observing Y particles within a molecular size volume v is a Gaussian fimction of N. The moments of the probability distribution fimction are related to the n-particle correlation functions and... [Pg.483]

Lamellar morphology variables in semicrystalline polymers can be estimated from the correlation and interface distribution fiinctions using a two-phase model. The analysis of a correlation function by the two-phase model has been demonstrated in detail before [30,11] The thicknesses of the two constituent phases (crystal and amorphous) can be extracted by several approaches described by Strobl and Schneider [32]. For example, one approach is based on the following relationship ... [Pg.1407]

The first-order El "golden-rule" expression for the rates of photon-induced transitions can be recast into a form in which certain specific physical models are easily introduced and insights are easily gained. Moreover, by using so-called equilibrium averaged time correlation functions, it is possible to obtain rate expressions appropriate to a... [Pg.416]

If the rotational motion of the molecules is assumed to be entirely unhindered (e.g., by any environment or by collisions with other molecules), it is appropriate to express the time dependence of each of the dipole time correlation functions listed above in terms of a "free rotation" model. For example, when dealing with diatomic molecules, the electronic-vibrational-rotational C(t) appropriate to a specific electronic-vibrational transition becomes ... [Pg.427]

Figure 2 Pair correlation functions of 0-0 and O-H at ( puted with the parameters of the SPC water model. Figure 2 Pair correlation functions of 0-0 and O-H at ( puted with the parameters of the SPC water model.
We discuss the rotational dynamics of water molecules in terms of the time correlation functions, Ciit) = (P [cos 0 (it)]) (/ = 1, 2), where Pi is the /th Legendre polynomial, cos 0 (it) = U (0) U (it), u [, Is a unit vector along the water dipole (HOH bisector), and U2 is a unit vector along an OH bond. Infrared spectroscopy probes Ci(it), and deuterium NMR probes According to the Debye model (Brownian rotational motion), both... [Pg.491]

The low-temperature chemistry evolved from the macroscopic description of a variety of chemical conversions in the condensed phase to microscopic models, merging with the general trend of present-day rate theory to include quantum effects and to work out a consistent quantal description of chemical reactions. Even though for unbound reactant and product states, i.e., for a gas-phase situation, the use of scattering theory allows one to introduce a formally exact concept of the rate constant as expressed via the flux-flux or related correlation functions, the applicability of this formulation to bound potential energy surfaces still remains an open question. [Pg.132]

M uj) is the default model, by which additional knowledge about system properties can be incorporated. Minimum additional knowledge is equivalent to M uS) = const. Without data, 5" is maximized by A uj) = M uj). measures the deviation of the time correlation function Q computed from a proposed A via Eq. (32) from the PIMC value G at the point in imaginary time,... [Pg.106]

Let us begin our discussion from the model of Cummings and Stell for heterogeneous dimerization a + P ap described in some detail above. In the case of singlet-level equations, HNCl or PYl, the direct correlation function of the bulk fluid c (r) represents the only input necessary to obtain the density profiles from the HNCl and PYl equations see Eqs. (6) and (7) in Sec. II A. It is worth noting that the transformation of a square-well, short-range attraction, see Eq. (36), into a 6-type associative interaction, see Eq. (39), is unnecessary unless one seeks an analytic solution. The 6-type term must be treated analytically while solving the HNCl... [Pg.180]

The density functional approach of Refs. 91, 92 introduces a correction to the wall-particle direct correlation function resulting from the HNCl approximation (see Eqs. (32)-(34)). A correction to Eq. (34) reads (we drop the species label because the model is one-component)... [Pg.190]

However, before proceeding with the description of simulation data, we would like to comment the theoretical background. Similarly to the previous example, in order to obtain the pair correlation function of matrix spheres we solve the common Ornstein-Zernike equation complemented by the PY closure. Next, we would like to consider the adsorption of a hard sphere fluid in a microporous environment provided by a disordered matrix of permeable species. The fluid to be adsorbed is considered at density pj = pj-Of. The equilibrium between an adsorbed fluid and its bulk counterpart (i.e., in the absence of the matrix) occurs at constant chemical potential. However, in the theoretical procedure we need to choose the value for the fluid density first, and calculate the chemical potential afterwards. The ROZ equations, (22) and (23), are applied to decribe the fluid-matrix and fluid-fluid correlations. These correlations are considered by using the PY closure, such that the ROZ equations take the Madden-Glandt form as in the previous example. The structural properties in terms of the pair correlation functions (the fluid-matrix function is of special interest for models with permeabihty) cannot represent the only issue to investigate. Moreover, to perform comparisons of the structure under different conditions we need to calculate the adsorption isotherms pf jSpf). The chemical potential of a... [Pg.313]

The correlation functions of the partly quenched system satisfy a set of replica Ornstein-Zernike equations (21)-(23). Each of them is a 2 x 2 matrix equation for the model in question. As in previous studies of ionic systems (see, e.g.. Refs. 69, 70), we denote the long-range terms of the pair correlation functions in ROZ equations by qij. Here we apply a linearized theory and assume that the long-range terms of the direct correlation functions are equal to the Coulomb potentials which are given by Eqs. (53)-(55). This assumption represents the mean spherical approximation for the model in question. Most importantly, (r) = 0 as mentioned before, the particles from different replicas do not interact. However, q]f r) 7 0 these functions describe screening effects of the ion-ion interactions between ions from different replicas mediated by the presence of charged obstacles, i.e., via the matrix. The functions q j (r) need to be obtained to apply them for proper renormalization of the ROZ equations for systems made of nonpoint ions. [Pg.338]

Lattice models for bulk mixtures have mostly been designed to describe features which are characteristic of systems with low amphiphile content. In particular, models for ternary oil/water/amphiphile systems are challenged to reproduce the reduction of the interfacial tension between water and oil in the presence of amphiphiles, and the existence of a structured disordered phase (a microemulsion) which coexists with an oil-rich and a water-rich phase. We recall that a structured phase is one in which correlation functions show oscillating behavior. Ordered lamellar phases have also been studied, but they are much more influenced by lattice artefacts here than in the case of the chain models. [Pg.656]

Hence, the correlation functions for (f) in the extended and in the basic models are similar. [Pg.724]

J. Stafiej, J. P. Badiali. A simple model for Coulombic systems. Thermodynamics, correlation functions and criticahty. J Chem Phys 706 8579-8586, 1997. [Pg.848]

There is no systematic way in which the exchange correlation functional Vxc[F] can be systematically improved in standard HF-LCAO theory, we can improve on the model by increasing the accuracy of the basis set, doing configuration interaction or MPn calculations. What we have to do in density functional theory is to start from a model for which there is an exact solution, and this model is the uniform electron gas. Parr and Yang (1989) write... [Pg.225]

It is important to realize that whenever qualitative or frontier molecular orbital theory is invoked, the description is within the orbital (Hartree-Fock or Density Functional) model for the electronic wave function. In other words, rationalizing a trend in computational results by qualitative MO theory is only valid if the effect is present at the HF or DFT level. If the majority of the variation is due to electron correlation, an explanation in terms of interacting orbitals is not appropriate. [Pg.355]

Although long-time Debye relaxation proceeds exponentially, short-time deviations are detectable which represent inertial effects (free rotation between collisions) as well as interparticle interaction during collisions. In Debye s limit the spectra have already collapsed and their Lorentzian centre has a width proportional to the rotational diffusion coefficient. In fact this result is model-independent. Only shape analysis of the far wings can discriminate between different models of molecular reorientation and explain the high-frequency pecularities of IR and FIR spectra (like Poley absorption). In the conclusion of Chapter 2 we attract the readers attention to the solution of the inverse problem which is the extraction of the angular momentum correlation function from optical spectra of liquids. [Pg.6]

Of course, the effect of excluded volume is opposite and greatly exceeds that shown in Fig. 1.10, which is produced by uncorrelated collective interaction. Unfortunately, neither of them results in sign-alternating behaviour of angular or translational momentum correlation functions. This does not have a simple explanation either in gas-like or solid-like models of liquids. As is clearly seen from MD calculations, even in... [Pg.49]


See other pages where Model correlation function is mentioned: [Pg.61]    [Pg.1769]    [Pg.2365]    [Pg.150]    [Pg.434]    [Pg.309]    [Pg.102]    [Pg.418]    [Pg.419]    [Pg.438]    [Pg.491]    [Pg.58]    [Pg.191]    [Pg.321]    [Pg.441]    [Pg.735]    [Pg.749]    [Pg.817]    [Pg.446]    [Pg.3]    [Pg.23]    [Pg.344]    [Pg.742]    [Pg.759]    [Pg.161]    [Pg.34]   
See also in sourсe #XX -- [ Pg.234 ]




SEARCH



Correlated models

Correlation function Langevin model

Correlation functions classical bath models

Correlation models

Ensemble-averaged correlation function stochastic models

Functional modeling

Functional models

Model function

Model pair correlation functions

Modeling Correlation

Pair correlation function fluid models

Pair correlation function hard-sphere fluid models

Velocity correlation function Langevin model

© 2024 chempedia.info