Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copper reduction illustration

An important family of multicopper enzymes couple the reduction of O2 to H2O with substrate oxidation. They include ascorbate oxidase, ceruloplasmin, Fet3, hephaestin, and laccase, and contain at least four copper ions. The four Cu ions are distributed between one type 1 blue copper site, one type 2 site, and one type 3 copper site. The blue Type 1 site is usually located some 12—13 A distant from a trinuclear site which has the two Type 3 coppers, linked by a bridging oxygen and one Type 2 copper. We illustrate this class of oxidases with laccase which catalyses the four-electron reduction of O2 to water, coupled with the oxidation of small organic... [Pg.287]

A variety of catalysts including copper, nickel, cobalt, and the platinum metals group have been used successfully in carbonyl reduction. Palladium, an excellent catalyst for hydrogenation of aromatic carbonyls is relatively ineffective for aliphatic carbonyls this latter group has a low strength of adsorption on palladium relative to other metals (72,91). Nonetheless, palladium can be used very well with aliphatic carbonyls with sufficient patience, as illustrated by the difficult-to-reduce vinylogous amide I to 2 (9). [Pg.66]

An electrochemical reaction is said to be polarized or retarded when it is limited by various physical and chemical factors. In other words, the reduction in potential difference in volts due to net current flow between the two electrodes of the corrosion cell is termed polarization. Thus, the corrosion cell is in a state of nonequilibrium due to this polarization. Figure 4-415 is a schematic illustration of a Daniel cell. The potential difference (emf) between zinc and copper electrodes is about one volt. Upon allowing current to flow through the external resistance, the potential difference falls below one volt. As the current is increased, the voltage continues to drop and upon completely short circuiting (R = 0, therefore maximum flow of current) the potential difference falls toward about zero. This phenomenon can be plotted as a polarization diagram shown in Figure 4-416. [Pg.1262]

Scheme 5.7 illustrates these and other applications of the hydride donors. Entries 1 and 2 are examples of reduction of alkyl halides, whereas Entry 3 shows removal of an aromatic halogen. Entries 4 to 6 are sulfonate displacements, with the last example using a copper hydride reagent. Entry 7 is an epoxide ring opening. Entries 8 and 9 illustrate the difference in ease of reduction of alkynes with and without hydroxy participation. [Pg.425]

Scheme 11.6 gives some examples of the various substitution reactions of aryl diazonium ions. Entries 1 to 6 are examples of reductive dediazonization. Entry 1 is an older procedure that uses hydrogen abstraction from ethanol for reduction. Entry 2 involves reduction by hypophosphorous acid. Entry 3 illustrates use of copper catalysis in conjunction with hypophosphorous acid. Entries 4 and 5 are DMF-mediated reductions, with ferrous catalysis in the latter case. Entry 6 involves reduction by NaBH4. [Pg.1032]

A steep rise of current to the plateau. This rise would be complete within approximately 200 mV, if surface overpotential were negligible. (See, e.g., Fig. 3a, illustrating cathodic deposition of copper in which the experimental current-voltage curve indicates an appreciable surface overpotential, and Fig. 3b, illustrating cathodic reduction of ferricyanide in which the surface overpotential is negligible.)... [Pg.230]

Scheme 14 illustrates Linstrumelle s synthesis of (9Z,11 )-9,11,13-tetradeca-trienyl acetate (8), the pheromone of the pyralid moth, Stenoma cecropia [25]. The key steps were palladium and copper-catalyzed Sonogashira couplings (A+B and C+D). Another noteworthy feature in this synthesis was the use of activated zinc dust in aqueous methanol for the reduction of the triple bonds of E to give two double bonds of 8. [Pg.13]

The latter is illustrated by the preparation of the previously unknown tetraformylselenophene by Morel (Eq. 26).88 The formyl group has also been introduced by treating dibromoselenophenes with copper cyanide in quinoline and reduction of the dicyano derivative obtained.89... [Pg.149]

The substrates tested alone have substantially different values. Polycarbonate (1/4 inch) structural foam has an of 27.5, modified-polyphenylene oxide (1/4 inch), 84.4, and RIM polyurethane (1/2 inch), 173.3. These values compare with 164.4 for 1/4 inch hardboard and 139.1 for 1/4 inch plywood. A comparison of graphite, nickel, and copper/aciylic coatings on polycarbonate and modified-polyphenylene oxide substrates illustrate a dramatic result. Despite a factor of 3 difference in substrate performance, the Q and Fs values for the coated samples are very similar. The Q for the modified-polyphenylene oxide samples are 0.7 to 0.5 that of the uncoated sample. One would expect a similarity in Fs for the coated sample, but such a reduction in Q is dramatic. Both Q and Fs are determined by the 2 mil surface. [Pg.293]

Figure 6.20 Quick EXAFS and XRD measurements recorded during the temperature programmed reduction of copper in a Cu/Zn0/Al203 methanol synthesis catalyst. The disappearance and appearance of peaks with increasing temperature in the series of EXAFS spectra corresponds to the conversion of oxidic to metallic copper. The intensity of the relatively sharp peak around 9040 eV, indicative of Cu metal, clearly illustrates the kinetics of the reduction process, as does the intensity of the (111) reflection of Cu metal in the XRD spectra (adapted from Clausen 44J). Figure 6.20 Quick EXAFS and XRD measurements recorded during the temperature programmed reduction of copper in a Cu/Zn0/Al203 methanol synthesis catalyst. The disappearance and appearance of peaks with increasing temperature in the series of EXAFS spectra corresponds to the conversion of oxidic to metallic copper. The intensity of the relatively sharp peak around 9040 eV, indicative of Cu metal, clearly illustrates the kinetics of the reduction process, as does the intensity of the (111) reflection of Cu metal in the XRD spectra (adapted from Clausen 44J).
For example, in Chapter 12, Section 4, we have examined the electrochemical response of azurin (from Pseudomonas aeruginosa), the only cupredoxin in which the copper(II) ion is pentacoordinate. Its reversible Cu(II)/Cu(I) reduction occurs at Eol= +0.31 V, vs. NHE, at 25° C. Measurements of the variation of the formal electrode potential with temperature in a non-iso thermic electrochemical cell gives the two diagrams illustrated in Figure ll.20... [Pg.601]

Direct, controlled preparation of copper(I) complexes was achieved by Evans [7] from bisoxazolines and copper(I)triflate, which avoids the use of other methods for reduction or accidental reduction by the substrate, which may not always be efficient. When isobutene is the substrate one obtains only two enantiomers and no other products for styrene we obtain a cis and a trans product each occurring as a pair of enantiomers. We will illustrate this with styrene and the results of Pfaltz s semicorrin-copper. [Pg.361]

Reduction of aryl diazonium ions by Ti(IEL) in the presence of a,/ -unsaturated ketones and aldehydes leads to /> arylation and formation of the saturated ketone or aldehyde. The early steps in this reaction parallel the copper-catalyzed reaction. However, rather than being oxidized, the radical formed by the addition step is reduced by Ti(IEL).109 Scheme 11.7 illustrates some typical examples of arylation of alkenes by diazonium ions. [Pg.722]

A similar mechanism may occur for systems involving Cu(II) coordinated to ter-dentate or bidentate ligands in which the oxidized complex exists primarily as a 1 2 complex while, upon reduction, the 1 1 complex predominates. Kandegedara et al. [48] reported that the system involving copper and the terdentate ligand [9]aneS3 (LBE) appears to involve such a mechanism as illustrated in Scheme 4 ... [Pg.1029]

Figure 2.16 The redox-driven disassembling of a dicopper(I) double-strand helicate complex to give two mononuclear copper(II) complexes, in which each strand behaves as a quadridentate ligand. On subsequent reduction, the two mononuclear complexes reassemble to give the helicate. The illustrated process fits well the behavior of copper complexes of 16 in a MeCN solution. Figure 2.16 The redox-driven disassembling of a dicopper(I) double-strand helicate complex to give two mononuclear copper(II) complexes, in which each strand behaves as a quadridentate ligand. On subsequent reduction, the two mononuclear complexes reassemble to give the helicate. The illustrated process fits well the behavior of copper complexes of 16 in a MeCN solution.
This preparation illustrates the use of the copper-chromium oxide catalyst in the reduction of esters of dibasic acids to glycols ... [Pg.873]

Iron atoms, Fe, for example, are better reducing agents than copper ions, Cu2+. So when a piece of iron metal and a solution containing copper ions are placed in contact with each other, electrons flow from the iron atoms to the copper ions, as Figure 11.6 illustrates. The result is the oxidation of iron atoms and the reduction of copper ions. [Pg.369]

The Oxidation-Reduction Reactions Part 2 movie (1eChapter 18.1) and the Galvanic Cells I movie (eChapter 18.1) both illustrate the same reaction, oxidation of zinc metal by copper(II) ions. Explain why this reaction as it is shown in the Oxidation-Reduction Reactions Part 2 movie cannot be used to generate a voltage. [Pg.814]


See other pages where Copper reduction illustration is mentioned: [Pg.324]    [Pg.6375]    [Pg.6374]    [Pg.158]    [Pg.172]    [Pg.508]    [Pg.221]    [Pg.52]    [Pg.195]    [Pg.23]    [Pg.137]    [Pg.611]    [Pg.94]    [Pg.220]    [Pg.299]    [Pg.245]    [Pg.242]    [Pg.438]    [Pg.481]    [Pg.970]    [Pg.650]    [Pg.680]    [Pg.1034]    [Pg.87]    [Pg.455]    [Pg.327]    [Pg.334]    [Pg.984]    [Pg.335]    [Pg.186]    [Pg.45]   
See also in sourсe #XX -- [ Pg.96 ]




SEARCH



Copper illustration

Copper reduction

© 2024 chempedia.info