Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copper II oxide

Copper(II) oxide, CuO. Black solid formed by heating Cu(OH)2, Cu(N03)2, etc. Dissolves in acid to Cu(II) salts, decomposes to CU2O at 800 C. Forms cuprates in solid state reactions. A cuprate(III), KCUO2, is also known. [Pg.112]

Ammonia will reduce metallic oxides which are reduced by hydrogen (for example copper(II) oxide, CuO, lead(II) oxide, PbO), being itself oxidised to nitrogen ... [Pg.220]

On heating, the basic carbonate readily yields the black copper(II) oxide. [Pg.411]

However, compounds known to be double oxides in the solid state are named as such for example, Cr2Cu04 (actually Cr203 CuO) is chromium(III) copper(II) oxide (and not copper chromite). [Pg.219]

Tellurite, see Tellurium dioxide Tenorite, see Copper(II) oxide Tephroite, see Manganese silicate(l—)... [Pg.275]

Nucleophilic Reactions. Useful nucleophilic substitutions of halothiophenes are readily achieved in copper-mediated reactions. Of particular note is the ready conversion of 3-bromoderivatives to the corresponding 3-chloroderivatives with copper(I)chloride in hot /V, /V- dim ethyl form am i de (26). High yields of alkoxythiophenes are obtained from bromo- and iodothiophenes on reaction with sodium alkoxide in the appropriate alcohol, and catalyzed by copper(II) oxide, a trace of potassium iodide, and in more recent years a phase-transfer catalyst (27). [Pg.20]

Copper(II) oxide [1317-38-0] can also cause porosity in the finished casting by combining with hydrogen formed by the dissociation of water in the mold material to form steam within the melt, thus causing holes during solidification. [Pg.248]

Coppet(II) oxide [1317-38-0] CuO, is found in nature as the black triclinic tenorite [1317-92-6] or the cubic or tetrahedral paramelaconite [71276-37 ]. Commercially available copper(II) oxide is generally black and dense although a brown material of low bulk density can be prepared by decomposition of the carbonate or hydroxide at around 300°C, or by the hydrolysis of hot copper salt solutions with sodium hydroxide. The black product of commerce is most often prepared by evaporation of Cu(NH2)4C02 solutions (35) or by precipitation of copper(II) oxide from hot ammonia solutions by addition of sodium hydroxide. An extremely fine (10—20 nm) copper(II) oxide has been prepared for use as a precursor in superconductors (36). [Pg.254]

Copper(II) oxide is less often prepared by pyrometaHurgical means. Copper metal heated in air to 800°C produces the copper(II) oxide. Decomposition of nitrates, carbonates, and hydroxides at various temperatures also occurs. [Pg.254]

Copper(II) oxide is insoluble in water, but readily dissolves in mineral acid or in hot formic or acetic acids. CuO slowly dissolves in ammonia solution, but alkaline ammonium carbonate solubilizes it quickly. [Pg.254]

Copper(II) sulfate monohydrate [10257-54-2] CuS04-H2 0, which is almost white in color, is hygroscopic and packaging must contain moisture barriers. This product is produced by dehydration of the pentahydrate at 120—150°C. Trituration of stoichiometric quantities of copper(II) oxide and sulfuric acid can be used to prepare a material of limited purity. The advantages of the monohydrate as opposed to the pentahydrate are lowered freight cost and quickness of solubilization. However, these advantages are offset by the dustiness of the product and probably less than one percent of copper sulfate is used in the monohydrate form. [Pg.255]

Cupri-. cupric, copper(II). -azetst, n. cupric acetate, copper(II) acetate, -carbonat, n. cupric carbonate, copper(II) carbonate, -chlorid, n. cupric chloride, copper(II) chloride. -hydroxyd, n. cupric hydroxide, cop-per(II) hydroxide. -ion, n. cupric ion, copper(II) ion. -ozalat, n. cupric oxalate, copper(II) oxalate, -oxyd, n. cupric oxide, copper(II) oxide. -salz, n. cupric salt, copper(II) salt, -suifat, n. cupric sulfate. copper(II) sulfate, -sulfid, n. cupric sulfide, copper(II) sulfide, -verbihdung, /. cupric compound, copper(II) compound, -wein-saure, /. cupritartaric acid. [Pg.94]

Kupferoxyd, n. cupric oxide, copper(II) oxide, -ammoniak, n. ammoniacal copper oxide, cu-prammonium. -ammoniakkunstseide, -am-moniakzellulose, /. cuprammonium rayon, -hydrat, n. cupric hydroxide, copper(II) hydroxide. -salz, n. cupric salt, copper(II) salt. [Pg.265]

Copper (II) oxide, 330-331 Copper (II) sulfate, 66 Copper sulfate, 66,260 Core electron An electron in an inner, complete level, 154... [Pg.685]

Toluene (J. T. Baker CYCLE-TRAINER solvent delivery kegs) was vigorously purged with argon for 2 hr and then passed through two packed columns of neutral alumina and copper(II) oxide under argon pressure.3... [Pg.33]

Apart from the three broad categories of student conceptions discussed above, students displayed several inappropriate conceptions relating to the stractural properties of substances. For example, 14% of students suggested that Mg + ions were present in magnesium ribbon. A second example involved the chemical reaction between copper(II) oxide powder and dilute sulphuric acid. In this instance, 25% of students suggested that Cu + ions were present only in aqueous solution but not in the solid and liquid states. This view was rather unexpected because students had earlier been introdnced to ionic and covalent compounds. It is likely that students had merely rote-learned the general rale without sufficient understanding that ionic solids are formed between metallic and non-metallic elements. [Pg.164]

A catalytic version of the coupling was also developed, by using 10 mol % of CuCl2 and 20 mol % of sparteine 1 (silver chloride was used as a stoichiometric oxidant to regenerate the copper (II) oxidant). This catalytic system was applied to the asymmetric cross-coupling leading to 101 in a 41% yield and 32% ee. [Pg.77]

Copper(II) oxide Zinc(II) oxide Magnesium oxide Cobalt(II) hydroxide Cobalt(II) carbonate Calcium aliuninosilicate glasses Gelatinizing minerals ... [Pg.6]

The most important of the phosphate bonded cements are the zinc phosphate, dental silicate and magnesium ammonium phosphate cements. The first two are used in dentistry and the last as a building material. Copper(II) oxide forms a good cement, but it is of minor practical value. In addition, certain phosphate cements have been suggested for use as controlled release agents. The various phosphate cements are described in more detail in the remainder of this chapter. [Pg.204]

There is virtually no knowledge of the setting and stmcture of copper phosphate cements. Mostly, they are complex materials. The simplest was based on a powder containing 91-5% CuO and 8-4% CO3O4. Others contained respectively 62-2 % CuO and 29-8 % ZnO, and 23-9 % Cu O and 66 7% ZnO, with other metal oxides. The strength of these cements is about the same as the zinc phosphate cement (Ware, 1971). There are also pseudo-copper cements, which are zinc phosphate cements coloured by minor amounts of copper(II) oxide. [Pg.221]

Vashkevitch Sychev (1982) have identified the main reaction product of the cement-forming reaction between copper(II) oxide and phosphoric acid as Cu3(P04)2. SHjO. The addition of polymers - poly(vinyl acetate) and latex - was found to inhibit the reaction and to reduce the compressive strength of these cements. However, impact strength and water resistance were improved. [Pg.221]

Copper(II) oxide and cobalt(II) hydroxide form cements with solutions of many multifunctional organic acids propanetricarboxylic acid, tartaric acid, malic acid, pyruvic acid, mellitic acid, gallic acid, tannic acid and phytic acid (Allen et al., 1984 Prosser et al., 1986). These have been used mainly in cement devices for the sustained release of copper and cobalt (Manston et al., 1985 Mansion Gleed, 1985). Little is known about... [Pg.315]

Copper oxides give rise to numerous accidents. When copper (II) oxide was heated with boron, it gave a highly violent reaction, which caused the melting of the Pyrex container. This is true for alkali metals and titanium as well as aluminium. The reactions lead to liquid metal copper. The emissions of glowing compounds make the reaction very dangerous. [Pg.207]

Zirconium reduces almost all oxygen-containing salts. This is the case for alkali hydroxides (accidents with the lithium, sodium and potassium compounds) and zirconium hydroxide, lithium, sodium and potassium carbonates, alkaline sulphates sodium tetraborate and copper (II) oxide. This is true especially for oxidising salts such as alkaline chromates and dichromates, chlorates (accident with potassium salt) and nitrates (accident with potassium salt). [Pg.217]

The enthalpy of absorption of 1- and 2-nitropropane on breathing mask cartridges made with carbon is such that the decomposition of the nitrated derivative can cause its ignition. This accident is aggravated when the cartridge also contains metal oxides such as copper (II) oxide or manganese dioxide. [Pg.295]

In the same way, phthalic anhydride gave rise to a violent detonation when it came into contact with copper (II) oxide. [Pg.332]

Methyldichlorosilane (CH3SiHCl2) combusts spontaneously in the presence of potassium permanganate, lead oxide and dioxide, copper (II) oxide and silver oxide, even when they are in an atmosphere of inert gas. [Pg.350]

EXAMPLE 6.8. Write formulas for (a) copper(I) oxide and (b) copper(II) oxide. [Pg.101]

Pure silver azide explodes at 340°C, but presence of below 10% of copper(I) or (II) oxides or sulfides, copper(I) selenide or bismuth(III) sulfide reduces the detonation temperature to 235°C. Concentrations of 10% of copper(II) oxide, copper(I) selenide or sulfide further reduced it to 200, 190 and 170°C, respectively. [Pg.20]

Mixtures with mercury (II) oxide and manganese dioxide prepared at — 80°C ignited at 20° and reacted violently at 15°C, respectively. Copper(II) oxide reacted vigorously at 25 °C without ignition. [Pg.79]

The heat of adsorption of 2-nitropropane is very high, so carbon-containing respirators should not be used in high vapour concentrations. Also, if Hopcalite catalyst (co-precipitated copper(II) oxide and manganese (IV) oxide) is present in the respirator cartridge, ignition may occur. [Pg.450]

Barium acetate, Yttrium oxide See Barium acetate Copper(II) oxide, etc. [Pg.1501]


See other pages where Copper II oxide is mentioned: [Pg.204]    [Pg.410]    [Pg.411]    [Pg.250]    [Pg.250]    [Pg.293]    [Pg.257]    [Pg.261]    [Pg.328]    [Pg.254]    [Pg.144]    [Pg.207]    [Pg.56]    [Pg.22]    [Pg.30]    [Pg.505]    [Pg.505]    [Pg.953]    [Pg.1501]   
See also in sourсe #XX -- [ Pg.4 ]

See also in sourсe #XX -- [ Pg.24 ]

See also in sourсe #XX -- [ Pg.18 , Pg.103 ]

See also in sourсe #XX -- [ Pg.29 , Pg.214 , Pg.259 ]




SEARCH



Copper II) oxide (s. a. under

Copper oxidized

Copper(II) catalyzed oxidation of primary alcohols to aldehydes with atmospheric oxygen

Copper/II)

II) Oxide

Oxidants copper

Oxidative coppering

Oxidic copper

© 2024 chempedia.info