Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copper complexes with olefins

The use of silver fluoroborate as a catalyst or reagent often depends on the precipitation of a silver haUde. Thus the silver ion abstracts a CU from a rhodium chloride complex, ((CgH )2As)2(CO)RhCl, yielding the cationic rhodium fluoroborate [30935-54-7] hydrogenation catalyst (99). The complexing tendency of olefins for AgBF has led to the development of chemisorption methods for ethylene separation (100,101). Copper(I) fluoroborate [14708-11-3] also forms complexes with olefins hydrocarbon separations are effected by similar means (102). [Pg.168]

Tetracyanoethylene is colorless but forms intensely colored complexes with olefins or aromatic hydrocarbons, eg, benzene solutions are yellow, xylene solutions are orange, and mesitylene solutions are red. The colors arise from complexes of a Lewis acid—base type, with partial transfer of a TT-electron from the aromatic hydrocarbon to TCNE (8). TCNE is conveniendy prepared in the laboratory from malononitrile [109-77-3] (1) by debromination of dibromoma1 ononitrile [1855-23-0] (2) with copper powder (9). The debromination can also be done by pyrolysis at ca 500°C (10). [Pg.403]

Tarkhanova IG, Smirnov VV, Rostovshchikova TN (2001) Distinctive characteristics of carbon tetrachloride addition to olefins in the presence of copper complexes with donor ligands. Kinet Katal 42(2) 216-222... [Pg.81]

The preparation and properties of copper(i) and silver trifluoromethanesulphon-ates, and their complexes with olefins and aromatic compounds have been reported extensively. ... [Pg.355]

Copper, silver, and gold form complexes with olefins of the following composition [CuX(olefin)] (X = C1, Br olefin = ethylene, propylene, butenes, COT, NBD, etc. dienes in these complexes are monodentate ligands), [Cu2X2(COD)2],... [Pg.378]

Pyridine-based N-containing ligands have been tested in order to extend the scope of the copper-catalyzed cyclopropanation reaction of olefins. Chelucci et al. [33] have carefully examined and reviewed [34] the efficiency of a number of chiral pyridine derivatives as bidentate Hgands (mainly 2,2 -bipyridines, 2,2 6, 2 -terpyridines, phenanthrolines and aminopyridine) in the copper-catalyzed cyclopropanation of styrene by ethyl diazoacetate. The corresponding copper complexes proved to be only moderately active and enantios-elective (ee up to 32% for a C2-symmetric bipyridine). The same authors prepared other chiral ligands with nitrogen donors such as 2,2 -bipyridines 21, 5,6-dihydro-1,10-phenanthrolines 22, and 1,10-phenanthrolines 23 (see Scheme 14) [35]. [Pg.104]

Suga and Ibata [44] prepared binaphtyldiimine derivatives 36 (Scheme 19) affording 98% ee as best selectivity for the transformation of 1,1-diphenyl-ethylene with Z-menthyl diazoacetate. The authors performed PM3 calculations and proposed an optimized structure of the copper complex to explain the high enantioselectivity observed with 1,1-disubstituted olefins. [Pg.108]

The proposed reaction mechanism involves intermolecular nucleophilic addition of the amido ligand to the olefin to produce a zwitterionic intermediate, followed by proton transfer to form a new copper amido complex. Reaction with additional amine (presnmably via coordination to Cn) yields the hydroamination prodnct and regenerates the original copper catalyst (Scheme 2.15). In addition to the NHC complexes 94 and 95, copper amido complexes with the chelating diphosphine l,2-bis-(di-tert-bntylphosphino)-ethane also catalyse the reaction [81, 82]. [Pg.44]

A similar, although less marked difference characterizes the cyclopropanation of olefins 41 and 42. In the presence of either copper or copper complexes whose chelating ligands contain an azomethine moiety derived from an a-amino acid, no stereoselectivity was observed with diene 41, whereas the cyclopropanes derived from 42 occur with cisjtrans ratios of 57 43 to 69 31, depending on the catalyst93). [Pg.105]

Kim et al. have reported that the copper complex bearing the unique dinitrogen ligand (51) catalyzes the aziridination of conjugated as well as nonconjugated olefins with good enantio-selectivity (Scheme 37).159... [Pg.230]

Copper, and occasionally silver, have been used as catalysts for hydroformylation of a-olefins. Phosphite complexes of copper(I) chloride have been claimed as catalysts (126). Phthalocyanine complexes of Group IB metals have been stated to show a low degree of catalytic activity (127). One of the more interesting examples of copper catalysis was disclosed by McClure (128). Copper powder, with a controlled amount of water (0.2-4.0 moles H20/mole Cu), gave a slow conversion of pro-... [Pg.55]

Various approaches to epoxide also show promise for the preparation of chiral aziridines. Identification of the Cu(I) complex as the most effective catalyst for this process has raised the possibility that aziridination might share fundamental mechanistic features with olefin cyclopropanation.115 Similar to cyclo-propanation, in which the generally accepted mechanism involves a discrete Cu-carbenoid intermediate, copper-catalyzed aziridation might proceed via a discrete Cu-nitrenoid intermediate as well. [Pg.255]

Bis(oxazoline)-copper complexes 158 have been used by Evans group as chiral catalysts for the enantioselective aziridination of olefins.116 Aryl-substituted olefins have been found to be particularly suitable substrates, which can be efficiently converted to A-tosylaziridines with ee of up to 97% (R = Ph... [Pg.257]

This rate expression is consistent with the reaction scheme shown in Eq. 10.6, formulated on the basis of the Krauss-Smith paper. Thus, the initially formed cuprate dimer/enone complex with lithium/carbonyl and copper/olefin coordinations [71, 72] transforms into the product via an intermediate or intermediates. A lithium/ carbonyl complex also forms, but this is a dead-end intermediate. Though detailed... [Pg.320]

The authors speculated that Pd(ii) was reduced by reaction with the IL, followed by formation of sigma complex between the olefin and copper triflate. This polarized complex then reacts with the Pd(0)-7r-complex with the substrate to form the final product as shown by the scheme below. Scheme 7. [Pg.164]

The first metal-olefin complex was reported in 1827 by Zeise, but, until a few years ago, only palladium(II), platinum(Il), copper(I), silver(I), and mercury(II) were known to form such complexes (67, 188) and the nature of the bonding was not satisfactorily explained until 1951. However, recent work has shown that complexes of unsaturated hydrocarbons with metals of the vanadium, chromium, manganese, iron, and cobalt subgroups can be prepared when the metals are stabilized in a low-valent state by ligands such as carbon monoxide and the cyclopentadienyl anion. The wide variety of hydrocarbons which form complexes includes olefins, conjugated and nonconjugated polyolefins, cyclic polyolefins, and acetylenes. [Pg.78]

The ease with which olefins form complexes with metals naturally led to investigation of acetylenes as ligands but until recent years only a few ill-defined, unstable acetylene complexes of copper and silver were known. Now complexes of acetylenes with metals of the chromium, manganese, iron, cobalt, nickel, and copper subgroups are known. These complexes fall naturally into two classes—those in which the structure of the acetylene is essentially retained and those in which the acetylene is changed into another ligand during complex formation. Complexes of the first class are discussed here and the second class is discussed in Section VI. [Pg.103]

Copper complexes catalyze formally related aziridination of olefins with ]7V-(p-toluenesulfonyl)imino]phenyliodinane, a nitrene precursor (219b). As exemplified in Scheme 98, catalysts formed from Cu(I) tri-flate and optically active bis(oxazolines) effect enantioselective reaction of styrene (Scheme 98) (218b, 219a). [Pg.307]

Recently, density functional calculations were performed to determine the nature and stereochemistry of the olefin insertion into the Cu-B bond of (NHC)Cu boryl complexes (NHC = iV-heterocyclic carbene). The theoretical calculations confirm that the mechanism of insertion involves a nucleophilic attack of the boryl ligand on the coordinated olefin. Furthermore, the hyperconjugation of Cu-C (bond angles, which was also experimentally confirmed by the X-ray diffraction studies of these boryl-copper complexes <2007OM2824>. [Pg.649]

Such J-mctals as Cu(I) [but not Cu(II)], form a variety of compounds with ethenes, for example [Cu(C2H4)(H20)2]C104 (from Cu, Cu2+, and C2H4) or Cu(C2H4)(bipy)+. It is necessary to mention that, of all the metals involved in biological systems, only copper reacts with ethylene [74b]. Such homoleptic alkene complexes can be useful intermediates for the synthesis of other complexes. The olefin complexes of the metals in high formal oxidation states are electron deficient and therefore inert toward electrophilic reagents. By contrast, the olefin complexes of the metals in low formal oxidation states are attacked by electrophiles such as protons at the electron-rich metal-carbon a-bonds [74c]. [Pg.170]


See other pages where Copper complexes with olefins is mentioned: [Pg.91]    [Pg.231]    [Pg.514]    [Pg.55]    [Pg.89]    [Pg.124]    [Pg.333]    [Pg.121]    [Pg.209]    [Pg.83]    [Pg.870]    [Pg.335]    [Pg.230]    [Pg.111]    [Pg.113]    [Pg.112]    [Pg.222]    [Pg.12]    [Pg.207]    [Pg.698]    [Pg.103]    [Pg.569]    [Pg.409]    [Pg.90]    [Pg.308]    [Pg.449]    [Pg.25]    [Pg.233]    [Pg.206]   
See also in sourсe #XX -- [ Pg.327 , Pg.328 , Pg.329 , Pg.330 , Pg.331 ]

See also in sourсe #XX -- [ Pg.327 , Pg.328 , Pg.329 , Pg.330 , Pg.331 ]




SEARCH



Complexes with olefins

Copper complexes with

Copper olefin complexes

Copper olefins

Olefin complexation

Olefin complexes

Olefines, complexes

With Copper

With Olefins

© 2024 chempedia.info