Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copper carboxylate, decompositions

Diverging results have been reported for the carbenoid reaction between alkyl diazoacetates and silyl enol ethers 49a-c. Whereas Reissig and coworkers 60) observed successful cyclopropanation with methyl diazoacetate/Cu(acac)2, Le Goaller and Pierre, in a note without experimental details u8), reported the isolation of 4-oxo-carboxylic esters for the copper-catalyzed decomposition of ethyl diazoacetate. According to this communication, both cyclopropane and ring-opened y-keto ester are obtained from 49 c but the cyclopropane suffers ring-opening under the reaction conditions. [Pg.112]

The copper-catalyzed decomposition of methyl 2-diazo-3-oxobutyrate 57 a in the presence of aldehydes gives ready excess to l,3-dioxole-4-carboxylates 275). Copper(II)... [Pg.192]

Mohamed and Galwey [71], in contrast, obtained evidence that copper underwent stepwise reduction when a was less than 0.5, from titration measurements of the copper(II) content (Cu " + KI — y in samples of partially decomposed salt. This is consistent with the behaviour foimd for other copper carboxylates [72]. Moreover, it was shown that the reactivities of both (Cu " and Cu" ) oxalates were similar and reactions overlapped. In agreement with the previous study [69], ur-time curves for the overall decomposition of copper(II) oxalate were sigmoidal and, in this slightly higher temperature interval (515 to 550 K), was increased to 180 7 kJ mol". ... [Pg.458]

Modhephene, 34, was the first isolated propellane natural product. As such, the Weiss-Cook reaction was the perfect method for its construction. The process began with the condensation of 2 with diketone 27. Standard conditions for decarboxylation produced the core scaffold 28. Hydrogenation of the mono-enol phosphate afforded the monoketone 29. The cyclopropyl derivative 30 was prepared by copper-catalyzed decomposition of a diazoketone. gem-Dimethylation to generate 31 preceded carboxylation and esterification to afford the advanced intermediate 32. Cuprate-induced cyclopropane ring opening and methylation of the 3-ketoester introduced the final carbon atoms giving rise to 33. Lithium iodide induced decarboxylation preceded reduction of the ketone followed by dehydration with Martin s sulfurane, thus producing 34. [Pg.187]

The pyrolysis of perfluoro carboxylic salts can result both in mono and bimolecular products At 210-220 °C, silver salts give mostly the coupled products, at 160-165 °C in A -methylpyrrolidinone, the corresponding copper salts also give the simple decarboxylated compounds in nearly equal amounts The decomposition of the copper salts m the presence of lodobenzene at 105-125 °C results m a phenyl derivative, in addition to the olefin and coupled product [94] (equations 60-62)... [Pg.906]

Transition-metal catalyzed decomposition of alkyl diazoacetates in the presence of acetylenes offers direct access to cyclopropene carboxylates 224 in some cases, the bicyclobutane derivatives 225 were isolated as minor by-products. It seems justified to state that the traditional copper catalysts have been superseded meanwhile by Rh2(OAc)4, because of higher yields and milder reaction conditions217,218) (Table 17). [(n3-C3H5)PdCl]2 has been shown to promote cyclopropenation of 2-butyne with ethyl diazoacetate under very mild conditions, too 2l9), but obviously, this variant did not achieve general usage. Moreover, Rh2(OAc)4 proved to be the much more efficient catalyst in this special case (see Table 17). [Pg.172]

The reaction, formally speaking a [3 + 2] cycloaddition between the aldehyde and a ketocarbene, resembles the dihydrofuran formation from 57 a or similar a-diazoketones and alkenes (see Sect. 2.3.1). For that reaction type, 2-diazo-l,3-dicarbonyl compounds and ethyl diazopyruvate 56 were found to be suited equally well. This similarity pertains also to the reactivity towards carbonyl functions 1,3-dioxole-4-carboxylates are also obtained by copper chelate catalyzed decomposition of 56 in the presence of aliphatic and aromatic aldehydes as well as enolizable ketones 276). No such products were reported for the catalyzed decomposition of ethyl diazoacetate in the presence of the same ketones 271,272). The reasons for the different reactivity of ethoxycarbonylcarbene and a-ketocarbenes (or the respective metal carbenes) have only been speculated upon so far 276). [Pg.193]

Similar to the intramolecular insertion into an unactivated C—H bond, the intermolecular version of this reaction meets with greatly improved yields when rhodium carbenes are involved. For the insertion of an alkoxycarbonylcarbene fragment into C—H bonds of acyclic alkanes and cycloalkanes, rhodium(II) perfluorocarb-oxylates 286), rhodium(II) pivalate or some other carboxylates 287,288 and rhodium-(III) porphyrins 287 > proved to be well suited (Tables 19 and 20). In the era of copper catalysts, this reaction type ranked as a quite uncommon process 14), mainly because the yields were low, even in the absence of other functional groups in the substrate which would be more susceptible to carbenoid attack. For example, CuS04(CuCl)-catalyzed decomposition of ethyl diazoacetate in a large excess of cyclohexane was reported to give 24% (15%) of C/H insertion, but 40% (61 %) of the two carbene dimers 289). [Pg.198]

Interestingly, the Fischer indole synthesis does not easily proceed from acetaldehyde to afford indole. Usually, indole-2-carboxylic acid is prepared from phenylhydrazine with a pyruvate ester followed by hydrolysis. Traditional methods for decarboxylation of indole-2-carboxylic acid to form indole are not environmentally benign. They include pyrolysis or heating with copper-bronze powder, copper(I) chloride, copper chromite, copper acetate or copper(II) oxide, in for example, heat-transfer oils, glycerol, quinoline or 2-benzylpyridine. Decomposition of the product during lengthy thermolysis or purification affects the yields. [Pg.52]

A ring enlargement process was used effectively to access the enantiopure pyrrolo [ 1,4]oxazepine-9a(7//)-carboxylate derivatives 142 and 143. The sequence involved copper (Il)-catalysed decomposition of an a-diazocarbonyl derivative attached to a chiral morpholinone, and a carbenoid, spiro-[5,6]-ammonium ylide, Stevens [1,2] rearrangement sequence. The Stevens and related rearrangements have considerable further potential for novel heterocyclic syntheses <00TA3449>. [Pg.370]

Because of the high nucleophilicity and reactivity of diazoalkanes, catalytic decomposition occurs readily, not only with a wide range of transition metal complexes but also with Brpnsted or Lewis acids. Well-established catalysts for diazodecomposition include zinc halides [638,639], palladium(II) acetate [640-642], rhodium(II) carboxylates [626,643] and copper(I) triflate [636]. Copper(II)... [Pg.114]

Catalysts suitable specifically for reduction of carbon-oxygen bonds are based on oxides of copper, zinc and chromium Adkins catalysts). The so-called copper chromite (which is not necessarily a stoichiometric compound) is prepared by thermal decomposition of ammonium chromate and copper nitrate [50]. Its activity and stability is improved if barium nitrate is added before the thermal decomposition [57]. Similarly prepared zinc chromite is suitable for reductions of unsaturated acids and esters to unsaturated alcohols [52]. These catalysts are used specifically for reduction of carbonyl- and carboxyl-containing compounds to alcohols. Aldehydes and ketones are reduced at 150-200° and 100-150 atm, whereas esters and acids require temperatures up to 300° and pressures up to 350 atm. Because such conditions require special equipment and because all reductions achievable with copper chromite catalysts can be accomplished by hydrides and complex hydrides the use of Adkins catalyst in the laboratory is very limited. [Pg.9]

This mechanism is of importance in radical induced amino acid damage catalyzed by copper ions. The study of the decomposition of transients with a metal-carbon -bond containing two potential leaving groups (both an amine and a carboxylate group) at the p position of the carbon centered radical is of special interest. It was reported that the intermediate formed with the amino acid 2-methylalanine with cupric ions decomposes via p-carboxyl elimination whereas the intermediate formed with cuprous ions decomposes via p-amine elimination (102). [Pg.294]

Phenol can also be prepared by the decomposition of benzoic acid prepared by the oxidation of toluene.927,978 The process is an oxidative decarboxylation catalyzed by copper(II). An interesting feature of this reaction is that the phenolic hydroxyl group enters into the position ortho to the carboxyl group as was proved by 14C labeling.979 In the Dow process980 molten benzoic acid is transformed with steam and air in the presence of Cu(II) and Mg(II) salts at 230-240°C. A copper oxide catalyst is used in a vapor-phase oxidation developed by Lummus.981... [Pg.513]

Functionalized cyclopropenes are viable synthetic intermediates whose applications [99.100] extend to a wide variety of carbocyclic and heterocyclic systems. However, advances in the synthesis of cyclopropenes, particularly through Rh(II) carboxylate—catalyzed decomposition of diazo esters in the presence of alkynes [100-102], has made available an array of stable 3-cyclopropenecarboxylate esters. Previously, copper catalysts provided low to moderate yields of cyclopropenes in reactions of diazo esters with disubstituted acetylenes [103], but the higher temperatures required for these carbenoid reactions often led to thermal or catalytic ring opening and products derived from vinylcarbene intermediates (104-107). [Pg.216]

The addition of alkoxycarbonylcarbene derived by catalysed decomposition of methyl diazoacetate to several simple, and in particular terminal, alkynes leads to low yields S7), but the reaction with 1 -trimethylsilylalkynes proceeds reasonably efficiently subsequent removal of the silyl-group either by base or fluoride ion provides a route to l-alkyl-3-cyclopropenecarboxylic acids. In the same way 1,2-bis-trimethylsilyl-ethyne can be converted to cyclopropene-3-carboxylic acid itself58 . The use of rhodium carboxylates instead of copper catalysts also generally leads to reasonable yields of cyclopropenes, even from terminal alkynes 59). [Pg.149]


See other pages where Copper carboxylate, decompositions is mentioned: [Pg.157]    [Pg.779]    [Pg.443]    [Pg.155]    [Pg.200]    [Pg.79]    [Pg.209]    [Pg.231]    [Pg.674]    [Pg.280]    [Pg.287]    [Pg.122]    [Pg.122]    [Pg.426]    [Pg.319]    [Pg.199]    [Pg.135]    [Pg.10]    [Pg.184]    [Pg.497]    [Pg.346]    [Pg.235]    [Pg.53]    [Pg.8]    [Pg.213]    [Pg.247]    [Pg.28]    [Pg.251]   


SEARCH



Copper carboxylate, decomposition, metal

Copper-carboxylate

© 2024 chempedia.info