Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copolymers relationships

PVdF). This study was mainly concerned with PMMA as the major component and PVdF as a permanent and light-stable plasticizer. As shown in Figure 9.15, the glass temperatures Tg of the blends follow a simple random-copolymer relationship ... [Pg.290]

For the purpose of polymer characterisation the ratio of absorbances at 10.33 and 8.69 pm should provide a measure of the degree of randomness with respect to the introduction of propylene units into the copolymer. On the basis of the observation, the ratio A10.33 pm/A8.69 pm should decrease as the randomness increases. In addition, an increase in ethylene content is expected to increase the probability of producing propylene units isolated by ethylene units. For comparison of the 10.33 to 8.69 absorbance ratio with other data, correction for the effect of composition is made by multiplying by the ratio mole% CH2 mole%CH3, the molar ratio of ethylene to propylene in the copolymer. Relationships have been found between this modified absorbance ratio and other established physical or spectral properties indicative of randomness (or conversely, block polymer). [Pg.189]

Mayo and collaborators were among the earliest workers to clarify the relationship between copolymer and monomer solution compositions. [Pg.427]

An ideal gas obeys Dalton s law that is, the total pressure is the sum of the partial pressures of the components. An ideal solution obeys Raoult s law that is, the partial pressure of the ith component in a solution is equal to the mole fraction of that component in the solution times the vapor pressure of pure component i. Use these relationships to relate the mole fraction of component 1 in the equilibrium vapor to its mole fraction in a two-component solution and relate the result to the ideal case of the copolymer composition equation. [Pg.429]

The molecular weight of SAN can be easily determined by either intrinsic viscosity or size-exclusion chromatography (sec). Relationships for both multipoint and single point viscosity methods are available (18,19). Two intrinsic viscosity and molecular weight relationships for azeotropic copolymers have been given (20,21) ... [Pg.192]

Melt Viscosity. As shown in Tables 2 and 3, the melt viscosity of an acid copolymer increases dramatically as the fraction of neutralization is increased. The relationship for sodium ionomers is shown in Figure 4 (6). Melt viscosities for a series of sodium ionomers derived from an ethylene—3.5 mol % methacrylic acid polymer show that the increase is most pronounced at low shear rates and that the ionomers become increasingly non-Newtonian with increasing neutralization (9). The activation energy for viscous flow has been reported to be somewhat higher in ionomers than in related acidic... [Pg.406]

The polyamides are soluble in high strength sulfuric acid or in mixtures of hexamethylphosphoramide, /V, /V- dim ethyl acetam i de and LiCl. In the latter, compHcated relationships exist between solvent composition and the temperature at which the Hquid crystal phase forms. The polyamide solutions show an abmpt decrease in viscosity which is characteristic of mesophase formation when a critical volume fraction of polymer ( ) is exceeded. The viscosity may decrease, however, in the Hquid crystal phase if the molecular ordering allows the rod-shaped entities to gHde past one another more easily despite the higher concentration. The Hquid crystal phase is optically anisotropic and the texture is nematic. The nematic texture can be transformed to a chiral nematic texture by adding chiral species as a dopant or incorporating a chiral unit in the main chain as a copolymer (30). [Pg.202]

Fig. 24. Relationship between feed composition and copolymer composition of styrene—acrylonitrile copolymerization. See text. Fig. 24. Relationship between feed composition and copolymer composition of styrene—acrylonitrile copolymerization. See text.
The dilute solution properties of copolymers are similar to those of the homopolymer. The intrinsic viscosity—molecular weight relationship for a VDC—AN copolymer (9 wt % AN) is [77] = 1.06 x 10 (83). The characteristic ratio is 8.8 for this copolymer. [Pg.433]

Intrinsic viscosity—molecular weight relationships have been obtained for copolymers in methyl ethyl ketone. The value for a 15 wt % ethyl acrylate (EA) copolymer is [77] = 2.88 x 10 . ... [Pg.433]

Block copolymers have become commercially valuable commodities because of their unique stmcture—property relationships. They are best described in terms of their appHcations such as thermoplastic elastomers (TPE), elastomeric fibers, toughened thermoplastic resins, compatibilizers, surfactants, and adhesives (see Elastot rs, synthetic—thermoplastic). [Pg.185]

The glass transition temperature of a random copolymer usually falls between those of the corresponding homopolymers since the copolymers will tend to have intermediate chain stiffness and interchain attraction. Where these are the only important factors to be considered a linear relationship between Tg and copolymer composition is both reasonable to postulate and experimentally verifiable. One form of this relationship is given by the equation... [Pg.63]

It must be pointed out that deviations from such a simple relationship do occur. For example, since random copolymerisation tends to promote disorder, reduce molecular packing and also reduce the interchain forces of attraction, the Tg of copolymers is often lower than would be predicted by the linear relationship. Examples are also known where the Tg of the copolymer is higher than predicted. This could occur where hydrogen bonding or dipole attraction is possible between dissimilar comonomer residues in the chain but not between similar residues, i.e. special interchain forces exist with the copolymers. [Pg.63]

With block copolymers two types of effect have been observed. In some instances a transition corresponding to each block is observable whilst in other cases a single transition is observed, usually close to that predicted by a linear relationship even where random copolymers show large deviations. This is because the blocks reduce both the contacts between dissimilar comonomer residues and also the disorder of the molecules which occurs in random copolymer systems. [Pg.63]

Whereas the glass transition of a copolymer is usually intermediate between those of the corresponding homopolymers this is not commonly the case with the melting points. Figure 4.12 shows the effect of copolymerising hexamethylenesebacamide with hexamethyleneterephthalamide. Only when the monomer units are isomorphous, so that the molecules can take up the same structure, is there a linear relationship between melting point and composition (as with hexamethyleneadipamide and hexamethyleneterephthalamide). [Pg.72]

The copolymers are prepared using a mixture of dimethyl terephthalate and dimethyl naphthalate. Published data indicates a reasonably linear relationship between and copolymer composition on the lines discussed in Section 4.2, e.g. Tg for a 50 50 copolymer is about 100°C which is about mid-way between Tg figures for the two homopolymers. In line with most other copolymers there is no such linearity in the crystalline melting point (T, ). As comonomer levels are introduced drops from the values for both homopolymers and indeed crystallisation only readily occurs where one of the components is dominant, i.e. 80%. Thus commercial copolymers are usually classified into two types ... [Pg.723]

The analysis of the main properties of aqueous solutions of polyacrylamide and copolymers of acrylamide has been reviewed [4,5]. The main characteristics of aqueous solutions of polyacrylamide is viscosity. The viscosity of aqueous solutions increases with concentration and molecular weight of polyacrylamide and decreases with increasing temperature. The relationship between the intrinsic viscosity [q]) in cmVg and the molecular weight for polyacrylamide follows the Mark-Houwink equations ... [Pg.62]

The structure-property relationship of graft copolymers based on an elastomeric backbone poly(ethyl acry-late)-g-polystyrene was studied by Peiffer and Rabeony [321. The copolymer was prepared by the free radical polymerization technique and, it was found that the improvement in properties depends upon factors such as the number of grafts/chain, graft molecular weight, etc. It was shown that mutually grafted copolymers produce a variety of compatibilized ternary component blends. [Pg.641]

Labeled initiators have been used in evaluating the relative reactivity of a wide range of monomers towards initiating radicals.159 The method involves determination of the relative concentrations of the end groups fanned by addition to two monomers (e.g. 119 and 120) in a binary copolymer formed with use of a labeled initiator. For example, when AlBMe-a-13C is used to initiate copolymerization of MMA and VAc (Scheme 3.99),157 the simple relationship (eq. 14) gives the relative rate constants for addition to the two monomers. Copolymerizations studied in this way arc summarized in Tabic 3.13. [Pg.148]

Water Permeation of Nitrile Copolymers. While the AN content bears a direct relationship to the gas barrier, the water permeability presents quite an anomaly. If the water permeation of the commercial SAN films (25% AN) is measured, the rate is higher than that of polystyrene. Thus it appears that films with greater AN content have even higher water permeation rates. It was discovered, however, (I, 7) that as the AN content increases there is a shift in permeation, and the higher AN/S materials show water barriers of excellent quality. Table VIII... [Pg.75]

Polyethylene s simplicity of structure has made it one of the most thoroughly studied polymeric materials. With an estimated demand of close to 109 billion pounds in 2000 of the homopolymer and various copolymers of polyethylene,24 it is by far the world s highest volume synthetic macromolecule. Therefore, it is still pertinent to study its structure-property relationships, thermal behavior, morphology, and effects of adding branches and functional groups to the polymer backbone. [Pg.445]

Heterocyclic block copolymers, 282-284 Heterocyclic diamines, rigid, 281 Heterocyclic polymers, structure-property relationships in, 273-274 Heterocyclic ring formation, PQ and PPQ synthesis by, 309-310 Hexadecyltrimethylammonium bromide (HTMAB), 549-550 Hexamethylene diisocyanate (HDI), 199, 210. See also HDI trimer Hexamethylenediamine-adipic acid salt, 169, 170... [Pg.585]

The interest in this type of copolymers is still very strong due to their large volume applications as emulsifiers and stabilizers in many different systems 43,260,261). However, little is known about the structure-property relationships of these systems 262) and the specific interactions of different segments in these copolymers with other components in a particular multicomponent system. Sometimes, minor chemical modifications in the PDMS-PEO copolymer backbone structures can lead to dramatic changes in its properties, e.g. from a foam stabilizer to an antifoam. Therefore, recent studies are usually directed towards the modification of polymer structures and block lengths in order to optimize the overall structure-property-performance characteristics of these systems 262). [Pg.46]

In this section of our review, we shall discuss the morphological aspects and structure-property relationships of a few specific copolymeric systems which we think will represent the general features of siloxane containing multiphase copolymers. More detailed discussions about the properties of each copolymer system may be found in the references cited during our review of the copolymer preparation methods. On the other hand an in-depth discussion of the interesting surface morphology and the resultant surface properties of the siloxane containing copolymers and blends will be provided. [Pg.64]


See other pages where Copolymers relationships is mentioned: [Pg.442]    [Pg.304]    [Pg.259]    [Pg.415]    [Pg.433]    [Pg.497]    [Pg.136]    [Pg.63]    [Pg.368]    [Pg.830]    [Pg.368]    [Pg.134]    [Pg.31]    [Pg.33]    [Pg.35]    [Pg.35]    [Pg.132]    [Pg.50]    [Pg.62]    [Pg.63]    [Pg.63]    [Pg.64]    [Pg.67]    [Pg.73]   
See also in sourсe #XX -- [ Pg.150 ]

See also in sourсe #XX -- [ Pg.141 ]




SEARCH



Copolymer relationship between flexibility

Copolymers quantitative structure-property relationships

Copolymers viscosity-molecular weight relationship

Necessary relationships copolymers

© 2024 chempedia.info