Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Coordination complexes examples

Volatile Derivatives for GC. The reactions to produce volatile derivatives can be classified as silylation, acylation, alkylation, and coordination complexation. Examples of the first three types are included in Table 5... [Pg.289]

The reactions to produce volatile derivatives can be classified as silylation, acylation, alkylation, and coordination complexation. Examples of the first three types are included in Table 10.1 which is organized by functional groups including carboxylic acid, hydroxyl, amine, and carbonyl. Amines require special consideration even if they are volatile. Their strong tendency to hydrogen-bond often makes it difficult to elute them from a GC column. Consequently, amines often have to be derivatized whether they are volatile or not. A review of this subject has appeared recently [29]. [Pg.195]

Complexes of these ligands have not yet been developed into commonly used catalysts, although early metal p-diketiminate complexes with co-catalysts do catalyze the polymerization of ethylene. More striking, these ligands have led to the synthesis of a number of unusual low-coordinate complexes. Examples of such complexes are described later in this section. Other examples are shown in later chapters of this text. ... [Pg.170]

Complexes of titanium(III) can be made from the trichloride— these are either approximately octahedral, 6-coordinate (for example TiClj.SL (L = ligand) and [TiCljfHjOj, formed when TiCls dissolves in aqueous hydrochloric acid), or 5-coordinate with a trigonal bipyramid structure. [Pg.372]

Divalent molybdenum compounds occur in mononuclear, dinuclear, and hexanuclear forms. Selected examples are shown in Figure 6. The mononuclear compounds are mostiy in the realm of organometaUic chemistry (30—32). Seven-coordinate complexes are common and include MoX2(CO)2(PR3)2, where X = Cl, Br, and I, and R = alkyl MoCl2(P(CH3)3)4, heptakis(isonitrile) complexes of the form Mo(CNR) 2 (Fig. 6d), and their chloro-substituted derivatives, eg, Mo(CNR)3CR. The latter undergo reductive coupling to form C—C bonds in the molybdenum coordination sphere (33). [Pg.473]

Metal Deactivation. Compounds capable of forming coordination complexes with metal ions are needed for this purpose. A chelating agent such as ethylene-diaminetetraacetic acid (EDTA) is a good example. [Pg.246]

Coordination Complexes. The coordination and organometaHic chemistry of thorium is dominated by the extremely stable tetravalent ion. Except in a few cases where large and stericaHy demanding ligands are used, lower thorium oxidation states are generally unstable. An example is the isolation of a molecular Th(III) complex [107040-62-0] Th[Tj-C H2(Si(CH2)3)2]3 (25). Reports (26) on the synthesis of soluble Th(II) complexes, such as... [Pg.37]

The majority of U(V1) coordination chemistry has been explored with the trans-ddo s.o uranyl cation, UO " 2- The simplest complexes are ammonia adducts, of importance because of the ease of their synthesis and their versatihty as starting materials for other complexes. In addition to ammonia, many of the ligand types mentioned ia the iatroduction have been complexed with U(V1) and usually have coordination numbers of either 6 or 8. As a result of these coordination environments a majority of the complexes have an octahedral or hexagonal bipyramidal coordination environment. Examples iuclude U02X2L (X = hahde, OR, NO3, RCO2, L = NH3, primary, secondary, and tertiary amines, py n = 2-4), U02(N03)2L (L = en, diamiaobenzene n = 1, 2). The use of thiocyanates has lead to the isolation of typically 6 or 8 coordinate neutral and anionic species, ie, [U02(NCS)J j)/H20 (x = 2-5). [Pg.330]

When a Br nsted base functions catalytically by sharing an electron pair with a proton, it is acting as a general base catalyst, but when it shares the electron with an atom other than the proton it is (by definition) acting as a nucleophile. This other atom (electrophilic site) is usually carbon, but in organic chemistry it might also be, for example, phosphorus or silicon, whereas in inorganic chemistry it could be the central metal ion in a coordination complex. Here we consider nucleophilic reactions at unsaturated carbon, primarily at carbonyl carbon. Nucleophilic reactions of carboxylic acid derivatives have been well studied. These acyl transfer reactions can be represented by... [Pg.349]

Exciting developments have occurred in the coordination chemistry of the alkali metals during the last few years that have completely rejuvenated what appeared to be a largely predictable and worked-out area of chemistry. Conventional beliefs had reinforced the predominant impression of very weak coordinating ability, and had rationalized this in terms of the relatively large size and low charge of the cations M+. On this view, stability of coordination complexes should diminish in the sequence Li>Na>K>Rb> Cs, and this is frequently observed, though the reverse sequence is also known for the formation constants of, for example, the weak complexes with sulfate, peroxosulfate, thiosulfate and the hexacyanoferrates in aqueous solutions. [Pg.90]

Four-coordinate complexes provide good examples of the early use of preparative methods for establishing stereochemistry. For complexes of the type [Ma2b2], where a and b are unidentate ligands, a tetrahedral structure cannot produce isomerism whereas a planar structure leads to cis and trans isomers (see below). The preparation of 2 isomers of [PtCl2(NH3)2], for instance, was taken as good evidence for their planarity. ... [Pg.914]

Five-coordinate complexes are far more common than was once supposed and are now known for all configurations from d to d. Two limiting stereochemistries may be distinguished (Fig. 19.4). One of the first authenticated examples of 5-coordination was [VO(acac)2] which has the square-pyramidal 4 structure with the =0 occupying the unique apical site. However, many of the complexes with this coordination number have structures intermediate between the... [Pg.914]

This is the most common coordination number for complexes of transition elements. It can be seen by inspection that, for compounds of the type (Ma4b2), the three symmetrical structures (Fig. 19.6) can give rise to 3, 3 and 2 isomers respectively. Exactly the same is true for compounds of the type [Mayby]. In order to determine the stereochemistry of 6-coordinate complexes very many examples of such compounds were prepared, particularly with M = Cr and Co , and in no case was more than 2 isomers found. This, of course, was only negative evidence for the octahedral structure, though the... [Pg.914]

To remove an ion, we can use the fact that many metal cations are Lewis acids (Section 10.2). When a Lewis acid and a Lewis base react, they form a coordinate covalent bond and the product is called a coordination complex. In this section, we consider complexes in which the Lewis acid is a metal cation, such as Ag+. An example is the formation of Ag(NI 1,)2+ when an aqueous solution of the Lewis base ammonia is added to a solution of silver ions ... [Pg.593]

In an excellent review by Roesky et al. in 1994 [70a] a vast number of examples for coordination complexes of cyclic phosphazanes and phosphazenes and other related systems have already been compiled. In the following section, an attempt is made to cover the latest features of group 13 systems along with some earlier examples with phosphorus-nitrogen based systems other than pyridyl phosphanes. [Pg.102]

The reaction of alkenes with alkenes or alkynes does not always produce an aromatic ring. An important variation of this reaction reacts dienes, diynes, or en-ynes with transition metals to form organometallic coordination complexes. In the presence of carbon monoxide, cyclopentenone derivatives are formed in what is known as the Pauson-Khand reaction The reaction involves (1) formation of a hexacarbonyldicobalt-alkyne complex and (2) decomposition of the complex in the presence of an alkene. A typical example Rhodium and tungsten ... [Pg.1091]

Whereas Cu and Ag form complexes with derivatives of transition-metal carbonyls in which the Cu or Ag are 4 coordinated in both the reactant and in the final product, many analogous Au complexes exhibit only 2 coordination. For example, the simple Au complex Ph3PAuCI reacts with transition-metal carbonyl anions in THF to give complexes with transition-metal to Au bonds, e.g. ... [Pg.529]

Metal deactivators—Organic compounds capable of forming coordination complexes with metals are known to be useful in inhibiting metal-activated oxidation. These compounds have multiple coordination sites and are capable of forming cyclic strucmres, which cage the pro-oxidant metal ions. EDTA and its various salts are examples of this type of metal chelating compounds. [Pg.467]

Structural types for organometallic rhodium and iridium porphyrins mostly comprise five- or six-coordinate complexes (Por)M(R) or (Por)M(R)(L), where R is a (T-bonded alkyl, aryl, or other organic fragment, and Lisa neutral donor. Most examples contain rhodium, and the chemistry of the corresponding iridium porphyrins is much more scarce. The classical methods of preparation of these complexes involves either reaction of Rh(III) halides Rh(Por)X with organolithium or Grignard reagents, or reaction of Rh(I) anions [Rh(Por)] with alkyl or aryl halides. In this sense the chemistry parallels that of iron and cobalt porphyrins. [Pg.293]

Complex ions, also called coordination complexes, have well-defined stoichiometries and structural arrangements. Usually, the formula of a coordination complex is enclosed in brackets to show that the metal and all its ligands form a single structural entity. When an ionic coordination complex is isolated from aqueous solution, the product is composed of the complex ion and enough counter-ions to give a neutral salt. In the chemical formula, the counter-ions are shown outside the brackets. Examples include the sulfate salt of [Ni (NH3)g, ... [Pg.1436]


See other pages where Coordination complexes examples is mentioned: [Pg.76]    [Pg.501]    [Pg.137]    [Pg.76]    [Pg.501]    [Pg.137]    [Pg.364]    [Pg.252]    [Pg.470]    [Pg.177]    [Pg.477]    [Pg.164]    [Pg.329]    [Pg.329]    [Pg.429]    [Pg.381]    [Pg.53]    [Pg.915]    [Pg.967]    [Pg.1025]    [Pg.140]    [Pg.309]    [Pg.148]    [Pg.234]    [Pg.946]    [Pg.168]    [Pg.232]    [Pg.276]    [Pg.345]    [Pg.350]    [Pg.359]    [Pg.283]    [Pg.1439]   
See also in sourсe #XX -- [ Pg.179 ]

See also in sourсe #XX -- [ Pg.198 ]




SEARCH



Copper complexes coordination numbers, examples

© 2024 chempedia.info