Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cooling gas phase

Heat-transfer resistance Across two-phase interface in fast reactions Gas side of tube wall in liquid-cooled gas-phase or G/S reactors Within solid particles in solid-fluid reactions... [Pg.530]

The involvement of a dark state in the decay of electronically excited states is not limited to methylated uracil and thymine. In fact, all five nucleic acid bases have demonstrated similar behaviors upon electronic excitation [27, 30]. The possibility of a low lying state that couples with the S2 state has been suggested by Levy and coworkers to explain the broad structureless spectra of uracil and thymine in jet-cooled gas phase experiments [31]. de Vries group has recorded vibrationally resolved... [Pg.313]

Ga.s-to-particie conversion may result from homogeneous gas-phase processes, or it may be controlled by processes in the particulate phase. Gas-phase processes, either physical or chemical, can produce a supersaturated state which then collapses by aero,s ol formation. Physical processes producing supersaturation include adiabatic expansion or mixing with coo air—-discussed in the last chapter—or radiative or conductive cooling. Gas-phase chemical reactions such as the oxidation of SO2 to sulfuric acid in the atmosphere or the oxidation of SiCU to SiOi in industry also generate condensable products. [Pg.275]

Several instniments have been developed for measuring kinetics at temperatures below that of liquid nitrogen [81]. Liquid helium cooled drift tubes and ion traps have been employed, but this apparatus is of limited use since most gases freeze at temperatures below about 80 K. Molecules can be maintained in the gas phase at low temperatures in a free jet expansion. The CRESU apparatus (acronym for the French translation of reaction kinetics at supersonic conditions) uses a Laval nozzle expansion to obtain temperatures of 8-160 K. The merged ion beam and molecular beam apparatus are described above. These teclmiques have provided important infonnation on reactions pertinent to interstellar-cloud chemistry as well as the temperature dependence of reactions in a regime not otherwise accessible. In particular, infonnation on ion-molecule collision rates as a ftmction of temperature has proven valuable m refining theoretical calculations. [Pg.813]

The molecular constants that describe the stnicture of a molecule can be measured using many optical teclmiques described in section A3.5.1 as long as the resolution is sufficient to separate the rovibrational states [110. 111 and 112]. Absorption spectroscopy is difficult with ions in the gas phase, hence many ion species have been first studied by matrix isolation methods [113], in which the IR spectrum is observed for ions trapped witliin a frozen noble gas on a liquid-helium cooled surface. The measured frequencies may be shifted as much as 1 % from gas phase values because of the weak interaction witli the matrix. [Pg.813]

Genera.1 Ca.se, The simple adiabatic model just discussed often represents an oversimplification, since the real situation implies a multitude of heat effects (/) The heat of solution tends to increase the temperature and thus to reduce the solubihty. 2) In the case of a volatile solvent, partial solvent evaporation absorbs some of the heat. (This effect is particularly important when using water, the cheapest solvent.) (J) Heat is transferred from the hquid to the gas phase and vice versa. (4) Heat is transferred from both phase streams to the shell of the column and from the shell to the outside or to cooling cods. [Pg.29]

Manufacture. Anhydrous ammonium bifluoride containing 0.1% H2O and 93% NH4HF2 can be made by dehydrating ammonium fluoride solutions and by thermally decomposing the dry crystals (7). Commercial ammonium bifluoride, which usually contains 1% NH F, is made by gas-phase reaction of one mole of anhydrous ammonia and two moles of anhydrous hydrogen fluoride (8) the melt that forms is flaked on a cooled dmm. The cost of the material in 1992 was 1.48/kg. [Pg.148]

The pressure used in producing gas wells often ranges from 690— 10,300 kPa (100—1500 psi). The temperature of the inlet gas is reduced by heat-exchange cooling with the gas after the expansion. As a result of the cooling, a liquid phase of natural gas liquids that contains some of the LPG components is formed. The liquid is passed to a set of simple distillation columns in which the most volatile components are removed overhead and the residue is natural gasoline. The gas phase from the condensate flash tank is compressed and recycled to the gas producing formation. [Pg.184]

Gas-phase chemiluminescence is illustrated by the classic sodium—chlorine cool flame (174) ... [Pg.270]

At the high temperatures found in MHD combustors, nitrogen oxides, NO, are formed primarily by gas-phase reactions, rather than from fuel-bound nitrogen. The principal constituent is nitric oxide [10102-43-9] NO, and the amount formed is generally limited by kinetics. Equilibrium values are reached only at very high temperatures. NO decomposes as the gas cools, at a rate which decreases with temperature. If the combustion gas cools too rapidly after the MHD channel the NO has insufficient time to decompose and excessive amounts can be released to the atmosphere. Below about 1800 K there is essentially no thermal decomposition of NO. [Pg.422]

Both vapor-phase and Hquid-phase processes are employed to nitrate paraffins, using either HNO or NO2. The nitrations occur by means of free-radical steps, and sufftciendy high temperatures are required to produce free radicals to initiate the reaction steps. For Hquid-phase nitrations, temperatures of about 150—200°C are usually required, whereas gas-phase nitrations fall in the 200—440°C range. Sufficient pressures are needed for the Hquid-phase processes to maintain the reactants and products as Hquids. Residence times of several minutes are commonly required to obtain acceptable conversions. Gas-phase nitrations occur at atmospheric pressure, but pressures of 0.8—1.2 MPa (8—12 atm) are frequentiy employed in industrial units. The higher pressures expedite the condensation and recovery of the nitroparaffin products when cooling water is employed to cool the product gas stream leaving the reactor (see Nitroparaffins). [Pg.35]

Gas Phase. The gas-phase methanol hydrochlorination process is used more in Europe and Japan than in the United States, though there is a considerable body of Hterature available. The process is typicaHy carried out as foHows vaporized methanol and hydrogen chloride, mixed in equimolar proportions, are preheated to 180—200°C. Reaction occurs on passage through a converter packed with 1.68—2.38 mm (8—12 mesh) alumina gel at ca 350°C. The product gas is cooled, water-scmbbed, and Hquefied. Conversions of over 95% of the methanol are commonly obtained. Garnma-alurnina has been used as a catalyst at 295—340°C to obtain 97.8% yields of methyl chloride (25). Other catalysts may be used, eg, cuprous or zinc chloride on active alumina, carbon, sHica, or pumice (26—30) sHica—aluminas (31,32) zeoHtes (33) attapulgus clay (34) or carbon (35,36). Space velocities of up to 300 h , with volumes of gas at STP per hour per volume catalyst space, are employed. [Pg.514]

In conventional treating systems using cold-gas cleanup, the small fraction of metals released to the gas phase is captured effectively in the gas cooling and gas treating steps. The combination of gas cooling and multistage gas—Hquid contacting reduces very substantially the potential for airborne emissions of volatile metals such as lead, beryUium, mercury, or arsenic. [Pg.275]

Temperature and Humidity of Rich Gas Cooling and consequent dehumidification of the feed gas to an absorption tower can be very beneficial. A high humidity (or relative saturation with solvent) limits the capacity of the gas phase to take up latent heat and therefore is unfavorable to absorption. Thus, dehumidification of the inlet gas prior to introducing it into the tower is worth considering in the design of gas absorbers with large heat effects. [Pg.1359]


See other pages where Cooling gas phase is mentioned: [Pg.54]    [Pg.1373]    [Pg.54]    [Pg.1373]    [Pg.148]    [Pg.1125]    [Pg.2389]    [Pg.2456]    [Pg.165]    [Pg.43]    [Pg.384]    [Pg.386]    [Pg.388]    [Pg.399]    [Pg.402]    [Pg.415]    [Pg.416]    [Pg.496]    [Pg.109]    [Pg.269]    [Pg.97]    [Pg.103]    [Pg.367]    [Pg.375]    [Pg.28]    [Pg.38]    [Pg.170]    [Pg.436]    [Pg.311]    [Pg.94]    [Pg.206]    [Pg.158]   
See also in sourсe #XX -- [ Pg.258 ]




SEARCH



Cooled gas

Cooling phase

© 2024 chempedia.info