Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Conversions virtual

Levels of blood pressure vary significantly through the day and night. The lowest pressures occur during sleep. Conversely, virtually everyone has, to one degree or another, what is termed morning surge in blood pressure. [Pg.30]

In UltraSIM/UlSim the ultrasonic sound propagation from a virtual ultrasonic transducer can be simulated in ray tracing mode in any isotropic and homogeneous 3D geometry, including possible mode conversions phenomenons, etc. The CAD geometry for the simulation is a 3D NURBS surface model of the test object. It can be created in ROBCAD or imported from another 3D CAD system. [Pg.871]

If this reaction takes place in air, the evolved nitrogen monoxide is oxidised to the dioxide and this dissolves again as in equation (9.1) hence virtually complete conversion of nitrogen dioxide to nitric acid can occur (see nitric acid, below). With alkalis, a mixture of nitrite and nitrate is formed ... [Pg.233]

The 9 — 15 fragment was prepared by a similar route. Once again Sharpless kinetic resolution method was applied, but in the opposite sense, i.e., at 29% conversion a mixture of the racemic olefin educt with the virtually pure epoxide stereoisomer was obtained. On acid-catalysed epoxide opening and lactonization the stereocentre C-12 was inverted, and the pure dihydroxy lactone was isolated. This was methylated, protected as the acetonide, reduced to the lactol, protected by Wittig olefination and silylation, and finally ozonolysed to give the desired aldehyde. [Pg.322]

To obtain a reliable value of from the isotherm it is necessary that the monolayer shall be virtually complete before the build-up of higher layers commences this requirement is met if the BET parameter c is not too low, and will be reflected in a sharp knee of the isotherm and a well defined Point B. For conversion of into A, the ideal adsorptive would be one which is composed of spherically symmetrical molecules and always forms a non-localized film, and therefore gives the same value of on all adsorbents. Non-localization demands a low value of c as c increases the adsorbate molecules move more and more closely into registry with the lattice of the adsorbent, so that becomes increasingly dependent on the lattice dimensions of the adsorbent, and decreasingly dependent on the molecular size of the adsorbate. [Pg.103]

Most of the world s commercial formaldehyde is manufactured from methanol and air either by a process using a silver catalyst or one using a metal oxide catalyst. Reactor feed to the former is on the methanol-rich side of a flammable mixture and virtually complete reaction of oxygen is obtained conversely, feed to the metal oxide catalyst is lean in methanol and almost complete conversion of methanol is achieved. [Pg.493]

Ratio and Multiplicative Feedforward Control. In many physical and chemical processes and portions thereof, it is important to maintain a desired ratio between certain input (independent) variables in order to control certain output (dependent) variables (1,3,6). For example, it is important to maintain the ratio of reactants in certain chemical reactors to control conversion and selectivity the ratio of energy input to material input in a distillation column to control separation the ratio of energy input to material flow in a process heater to control the outlet temperature the fuel—air ratio to ensure proper combustion in a furnace and the ratio of blending components in a blending process. Indeed, the value of maintaining the ratio of independent variables in order more easily to control an output variable occurs in virtually every class of unit operation. [Pg.71]

Roasting occurs between temperatures of 530—650°C. Virtually no volatilisation of selenium or tellurium takes place during roasting. Conversion of both elements to the hexavalent form is complete. [Pg.328]

Some nitrate is also formed, thus the HOCl/NH stoichiometry is greater than theoretical, ie, - 1.7. This reaction, commonly called breakpoint chlorination, involves intermediate formation of unstable dichloramine and has been modeled kinetically (28). Hypobromous acid also oxidizes ammonia via the breakpoint reaction (29). The reaction is virtually quantitative in the presence of excess HOBr. In the case of chlorine, Htde or no decomposition of NH occurs until essentially complete conversion to monochloramine. In contrast, oxidation of NH commences immediately with HOBr because equihbrium concentrations of NH2Br and NHBr2 are formed initially. As a result, the typical hump in the breakpoint curve is much lower than in the case of chlorine. [Pg.453]

Reaction Conditions. Typical iadustrial practice of this reaction involves mixing vapor-phase propylene and vapor-phase chlorine in a static mixer, foEowed immediately by passing the admixed reactants into a reactor vessel that operates at 69—240 kPa (10—35 psig) and permits virtual complete chlorine conversion, which requires 1—4 s residence time. The overaE reactions are aE highly exothermic and as the reaction proceeds, usuaEy adiabaticaEy, the temperature rises. OptimaEy, the reaction temperature should not exceed 510°C since, above this temperature, pyrolysis of the chlorinated hydrocarbons results in decreased yield and excessive coke formation (27). [Pg.33]

Physiological Role of Citric Acid. Citric acid occurs ia the terminal oxidative metabolic system of virtually all organisms. This oxidative metabohc system (Fig. 2), variously called the Krebs cycle (for its discoverer, H. A. Krebs), the tricarboxyUc acid cycle, or the citric acid cycle, is a metaboHc cycle involving the conversion of carbohydrates, fats, or proteins to carbon dioxide and water. This cycle releases energy necessary for an organism s growth, movement, luminescence, chemosynthesis, and reproduction. The cycle also provides the carbon-containing materials from which cells synthesize amino acids and fats. Many yeasts, molds, and bacteria conduct the citric acid cycle, and can be selected for thek abiUty to maximize citric acid production in the process. This is the basis for the efficient commercial fermentation processes used today to produce citric acid. [Pg.182]

Polymerization System. This elastomer is prepared by emulsion polymerisation, similar to that used for SBR, but generally carried out to virtually 100% conversion. As for SBR, the chain irregularity leads to a noncrystallising mbber, so that this polymer requires carbon black reinforcement for strength. [Pg.470]

Kinetic Resolutions. From a practical standpoint the principal difference between formation of a chiral molecule by kinetic resolution of a racemate and formation by asymmetric synthesis is that in the former case the maximum theoretical yield of the chiral product is 50% based on a racemic starting material. In the latter case a maximum yield of 100% is possible. If the reactivity of two enantiomers is substantially different the reaction virtually stops at 50% conversion, and enantiomericaHy pure substrate and product may be obtained ia close to 50% yield. Convenientiy, the enantiomeric purity of the substrate and the product depends strongly on the degree of conversion so that even ia those instances where reactivity of enantiomers is not substantially different, a high purity material may be obtained by sacrificing the overall yield. [Pg.337]

In the case of emulsion polymerisation, half the micelles will be reacting at any one time. The conversion rate is thus virtually independent of radical concentration (within limits) but dependent on the number of micelles (or swollen polymer particles). [Pg.33]

Everyone is familiar, to some degree, with space activities. However, few are conversant with the role that various composite materials play in these activities. Weight savings are a crucial arena for space structures because of the enormous cost of boosting every structure from earth into space. Thus, composite materials are playing a compelling role in virtually all space structures, but not as much as they will in the future as more applications are developed. [Pg.50]


See other pages where Conversions virtual is mentioned: [Pg.1015]    [Pg.96]    [Pg.1015]    [Pg.96]    [Pg.872]    [Pg.258]    [Pg.377]    [Pg.141]    [Pg.577]    [Pg.43]    [Pg.344]    [Pg.400]    [Pg.453]    [Pg.458]    [Pg.461]    [Pg.461]    [Pg.489]    [Pg.222]    [Pg.31]    [Pg.35]    [Pg.369]    [Pg.106]    [Pg.329]    [Pg.480]    [Pg.237]    [Pg.255]    [Pg.352]    [Pg.55]    [Pg.457]    [Pg.41]    [Pg.244]    [Pg.32]    [Pg.224]    [Pg.43]    [Pg.242]    [Pg.710]    [Pg.1094]    [Pg.246]   
See also in sourсe #XX -- [ Pg.209 ]




SEARCH



© 2024 chempedia.info