Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Conversion to formates

Thus, acetyl-CoA oxidation via the acetyl-CoA pathway in Archaeoglobus fulgidus differs from that of eubacterial sulfate reducers in several respects It involves tetrahydromethanopterin rather than tetrahydrofolate (H4F) as Ci carrier, and formyl-methanofiiran rather than free formate as an intermediate. Furthermore, coenzyme F420 serves as electron acceptor of two dehydrogenases. In eubacterial sulfate reducers the oxidation of acetyl-CoA to CO2 involves the exergonic formyl-H4F conversion to formate and H4F, which is catalyzed by formyl-H4F synthetase this reaction is coupled with ATP synthesis by the mechanism of substrate level phosphorylation (for literature see refs. [90,209]). The different mechanism of formyl-H4MPT conversion to... [Pg.160]

Sato S, Arai T, Morikawa T, Utanura K, Suzuki TM, Tanaka H, Kajino T (2011) Selective CO2 conversion to formate conjugated with H2O oxidation utilizing semiconductor/complex hybrid photocatalysts. J Am Chem Soc 133 15240... [Pg.1538]

An important method for construction of functionalized 3-alkyl substituents involves introduction of a nucleophilic carbon synthon by displacement of an a-substituent. This corresponds to formation of a benzylic bond but the ability of the indole ring to act as an electron donor strongly influences the reaction pattern. Under many conditions displacement takes place by an elimination-addition sequence[l]. Substituents that are normally poor leaving groups, e.g. alkoxy or dialkylamino, exhibit a convenient level of reactivity. Conversely, the 3-(halomethyl)indoles are too reactive to be synthetically useful unless stabilized by a ring EW substituent. 3-(Dimethylaminomethyl)indoles (gramine derivatives) prepared by Mannich reactions or the derived quaternary salts are often the preferred starting material for the nucleophilic substitution reactions. [Pg.119]

Manufacture. For the commercial production of DPXN (di-/)-xylylene) (3), two principal synthetic routes have been used the direct pyrolysis of -xylene (4, X = Y = H) and the 1,6-Hofmaim elimination of ammonium (HNR3 ) from a quaternary ammonium hydroxide (4, X = H, Y = NR3 ). Most of the routes to DPX share a common strategy PX is generated at a controlled rate in a dilute medium, so that its conversion to dimer is favored over the conversion to polymer. The polymer by-product is of no value because it can neither be recycled nor processed into a commercially useful form. Its formation is minimised by careful attention to process engineering. The chemistry of the direct pyrolysis route is shown in equation 1 ... [Pg.430]

Tin reacts completely with fluorine above 190°C to form tin tetrafluoride [7783-62-2] SnF. Titanium reacts appreciably above 150°C at a rate dependent on the size of the particles the conversion to titanium tetrafluoride [7783-63-3] TiF, is complete above 200°C. Fluorine reacts with zirconium metal above 190°C. However, the formation of a coating of zirconium tetrafluoride [7783-64 ] ZrF, prevents complete conversion, the reaction reaching... [Pg.123]

However, BASF developed a two-step process (25). After methyl formate [107-31-3] became available in satisfactory yields at high pressure and low temperatures, its conversion to formamide by reaction with ammonia gave a product of improved quaUty and yield in comparison with the earlier direct synthesis. [Pg.508]

Hydroxybenzaldehyde has extensive use as an intermediate in the synthesis of a variety of agricultural chemicals. Halogenation of Nhydroxybenzaldehyde, followed by conversion to the oxime, and subsequent dehydration results in the formation of 3,5-dihalo-4-hydroxybenzonitrile (2). Both the dibromo- and dhodo-compounds are commercially important contact herbicides, hromoxynil [1689-84-5] (2) where X = Br, and ioxynil [1689-83-4]( where X = I respectively (74). Several hydrazone derivatives have also been shown to be active herbicides (70). [Pg.507]

Uranium oxide [1344-57-6] from mills is converted into uranium hexafluoride [7783-81-5] FJF, for use in gaseous diffusion isotope separation plants (see Diffusion separation methods). The wastes from these operations are only slightly radioactive. Both uranium-235 and uranium-238 have long half-Hves, 7.08 x 10 and 4.46 x 10 yr, respectively. Uranium enriched to around 3 wt % is shipped to a reactor fuel fabrication plant (see Nuclear REACTORS, NUCLEAR FUEL reserves). There conversion to uranium dioxide is foUowed by peUet formation, sintering, and placement in tubes to form fuel rods. The rods are put in bundles to form fuel assembHes. Despite active recycling (qv), some low activity wastes are produced. [Pg.228]

Mono- and dialkyl derivatives can also be prepared using alkyl sulfates. Aryl chlorides are usually inert, unless activated by an electron-withdrawing group. Conversion to alkoxides allows formation of ethers. [Pg.6]

Ethylbenzene Hydroperoxide Process. Figure 4 shows the process flow sheet for production of propylene oxide and styrene via the use of ethylbenzene hydroperoxide (EBHP). Liquid-phase oxidation of ethylbenzene with air or oxygen occurs at 206—275 kPa (30—40 psia) and 140—150°C, and 2—2.5 h are required for a 10—15% conversion to the hydroperoxide. Recycle of an inert gas, such as nitrogen, is used to control reactor temperature. Impurities ia the ethylbenzene, such as water, are controlled to minimize decomposition of the hydroperoxide product and are sometimes added to enhance product formation. Selectivity to by-products include 8—10% acetophenone, 5—7% 1-phenylethanol, and <1% organic acids. EBHP is concentrated to 30—35% by distillation. The overhead ethylbenzene is recycled back to the oxidation reactor (170—172). [Pg.139]

At atmospheric pressure, the conversion to trichlorosilane is limited to about 16%. The conversion of SiCl to HSiCl was found to be at equiUbrium. If contact time was greater than 45 s and the mole ratio of hydrogen to siUcon tetrachloride 1 1, then at 14 kPa (2 psi) and 550°C, the HSiCl mole fraction reached 0.7 but substantial formation of H2SiCl2 occurred (62). Enhancements in yield have been reported through preactivating the siUcon mass by removal of oxides (73) and the rapid thermal quench of the effluent gas stream (74). The reduction of siUcon tetrachloride in a plasma has also been reported (75). [Pg.23]

Conversion to acetates, trifluoroacetates (178), butyl boronates (179) trimethylsilyl derivatives, or cycHc acetals offers a means both for identifying individual compounds and for separating mixtures of polyols, chiefly by gas—Hquid chromatography (glc). Thus, sorbitol in bakery products is converted to the hexaacetate, separated, and determined by glc using a flame ionisation detector (180) aqueous solutions of sorbitol and mannitol are similarly separated and determined (181). Sorbitol may be identified by formation of its monobensylidene derivative (182) and mannitol by conversion to its hexaacetate (183). [Pg.52]

The preparation of triaryknethane dyes proceeds through several stages formation of the colorless leuco base in acid media, conversion to the colorless carbinol base by using an oxidising agent, eg, lead dioxide, manganese dioxide, or alkah dichromates, and formation of the dye by treatment with acid (Fig. 1). The oxidation of the leuco base can also be accompHshed with atmospheric oxygen in the presence of catalysts. [Pg.270]

Thermodynamic calculations for reactions forming carbon disulfide from the elements are compHcated by the existence of several known molecular species of sulfur vapor (23,24). Thermochemical data have been reported (12). Although carbon disulfide is thermodynamically unstable at room temperature, the equiHbtium constant of formation increases with temperature and reaches a maximum corresponding to 91% conversion to carbon disulfide at about 700°C. Carbon disulfide decomposes extremely slowly at room temperature in the absence of oxidizing agents. [Pg.27]

Some nitrate is also formed, thus the HOCl/NH stoichiometry is greater than theoretical, ie, - 1.7. This reaction, commonly called breakpoint chlorination, involves intermediate formation of unstable dichloramine and has been modeled kinetically (28). Hypobromous acid also oxidizes ammonia via the breakpoint reaction (29). The reaction is virtually quantitative in the presence of excess HOBr. In the case of chlorine, Htde or no decomposition of NH occurs until essentially complete conversion to monochloramine. In contrast, oxidation of NH commences immediately with HOBr because equihbrium concentrations of NH2Br and NHBr2 are formed initially. As a result, the typical hump in the breakpoint curve is much lower than in the case of chlorine. [Pg.453]

The rate of chlorination of toluene relative to that of ben2ene is about 345 (61). Usually, chlorination is carried out at temperatures below 70°C with the reaction proceeding at a profitable rate even at 0°C. The reaction is exothermic with ca 139 kj (33 kcal) of heat produced per mole of monochlorotoluene formed. Chlorine efficiency is high, and toluene conversion to monochlorotoluene can be carried to about 90% with the formation of only a few percent of dichlorotoluenes. In most catalyst systems, decreasing temperatures favor formation of increasing amounts of -chlorotoluene. Concentrations of requited catalysts are low, generally on the order of several tenths of a percent or less. [Pg.54]

The calcium cyanamide feed is weU mixed with the recycled slurry and filtrate ia a feed vessel. The calcium cyanamide is added at a rate to maintain a pH of 6.0—6.5 ia the cooling tank. The carbonation step can be conducted ia a turbiae absorber with a residence time of 1—2 min. After the carbonation step, the slurry is held at 30—40°C to complete the formation of calcium carbonate, after which the slurry is cooled and filtered. AH equipment for the process is preferably of stainless steel. The resulting solution is used directiy for conversion to dicyandiamide. [Pg.369]

The hydrolysis of nitriles can be carried out with either isolated enzymes or immobilized cells. Eor example, resting cells of P. chlororaphis can accumulate up to 400 g/L of acrylamide in 8 h, provided acrylonitrile is added gradually to avoid nitrile hydratase inhibition (116). The degree of acrylonitrile conversion to acrylamide is 99% without any formation of acryUc acid. Because of its high efficiency the process has been commercialized and currentiy is used by Nitto Chemical Industry Co. on a multithousand ton scale. [Pg.344]


See other pages where Conversion to formates is mentioned: [Pg.1186]    [Pg.546]    [Pg.228]    [Pg.393]    [Pg.30]    [Pg.1186]    [Pg.546]    [Pg.228]    [Pg.393]    [Pg.30]    [Pg.311]    [Pg.7]    [Pg.311]    [Pg.195]    [Pg.80]    [Pg.251]    [Pg.28]    [Pg.410]    [Pg.29]    [Pg.283]    [Pg.369]    [Pg.303]    [Pg.424]    [Pg.519]    [Pg.422]    [Pg.28]    [Pg.174]    [Pg.225]    [Pg.421]    [Pg.548]    [Pg.85]    [Pg.107]   
See also in sourсe #XX -- [ Pg.1098 ]




SEARCH



Formate conversion

© 2024 chempedia.info