Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Continuous models Gaussian distribution

If a large number of replicate readings, at least 50, are taken of a continuous variable, e.g. a titrimetric end-point, the results attained will usually be distributed about the mean in a roughly symmetrical manner. The mathematical model that best satisfies such a distribution of random errors is called the Normal (or Gaussian) distribution. This is a bell-shaped curve that is symmetrical about the mean as shown in Fig. 4.1. [Pg.136]

The random-walk model of diffusion can also be applied to derive the shape of the bell-shaped concentration profile characteristic of bulk diffusion. As in the previous section, a planar layer of N tracer atoms is the starting point. Each atom diffuses from the interface by a random walk of n steps in a direction perpendicular to the interface. As mentioned (see footnote 5) the statistics are well known and described by the binomial distribution (Fig. S5.5a-S5.5c). At large values of N, this discrete distribution can be approximated by a continuous function, the Gaussian distribution curve7 with a form ... [Pg.484]

In a situation whereby a large number of replicate readings, not less than 5 0, are observed of a titrimetric equivalence point (continuous variable), the results thus generated shall normally be distributed around the mean in a more or less symmetrical fashion. Thus, the mathematical model which not only fits into but also satisfies such a distribution of random errors is termed as the Normal or Gaussian distribution curve. It is a bell-shaped curve which is noted to be symmetrical about the mean as depicted in Figure 3.2. [Pg.79]

The normative approach to the practice of medicine, based on the definition of thresholds, is a different paradigm from the continuous distribution of most biological parameters and their associated risks, as described by physiologists and epidemiologists (360-362). Blood pressure, cholesterol, and renin have a logarithmic gaussian distribution in populations. Renin dependency, for instance, may be considered as a constant feature of all humans except when they have a positive sodium balance, which more or less mimics schematic animal models such as DOCA hypertension (349). In this extreme situation, cardiac, renal, and vascular damages may be direcdy induced by the excess of salt itself, in the absence of any functional RAS (363). [Pg.54]

The majority of statistical tests, and those most widely employed in analytical science, assume that observed data follow a normal distribution. The normal, sometimes referred to as Gaussian, distribution function is the most important distribution for continuous data because of its wide range of practical application. Most measurements of physical characteristics, with their associated random errors and natural variations, can be approximated by the normal distribution. The well known shape of this function is illustrated in Figure 1. As shown, it is referred to as the normal probability curve. The mathematical model describing the normal distribution function with a single measured variable, x, is given by Equation (1). [Pg.2]

The robustness to sensor drift of the method under study was evaluated using a simple synthetic drift model. A gain for each of the 60 sensors was initiated to 1 after which the gain factor was subject for over 100 random-walk steps taken from a Gaussian distribution with = 0.01. In the on-line learning condition while testing drift robustness, the last unsupervised vector quantization step was run continuously. [Pg.39]

Normal Distribution The most important continuous r.v. is one having the normal, or Gaussian, distribution. The normal distribution is used to model many real-life phenomena such as measurements of blood pressure and weight and dimensions. A large body of statistics is based on the assumption that the data follow the normal distribution. [Pg.32]

For a continuous child node both with discrete and continuous parent nodes (hybrid nodes), we can use, for example, a mixture (conditional) Gaussian distribution with the population mean of a child node as the linear combination of the continuous parent conditional distributions across different states of the discrete parent node. Conversely, for a discrete child node with hybrid nodes, we can apply, for example, logistic regression or probit models for inferring conditional distributions of the discrete child node variable. For example, in a logistic regression framework, we use... [Pg.266]

The measurements of nitrate ion concentration given in Table 2.2 have only certain discrete values, because of the limitations of the method of measurement. In theory a concentration could take any value, so a continuous curve is needed to describe the form of the population from which the sample was taken. The mathematical model usually used is the normal or Gaussian distribution which is described by the equation... [Pg.21]

There is no unique structure within an activated carbon which provides a specific isotherm, for example the adsorption of benzene at 273 K. The isotherm is a description of the distribution of adsorption potentials throughout the carbon, this distribution following a normal or Gaussian distribution. If a structure is therefore devised which permits a continuous distribution of adsorption potentials, and this model predicts an experimental adsorption isotherm, this then is no guarantee that the stmcture of the model is correct. The wider experience of the carbon scientist, who relates the model to preparation methods and physical and chemical properties of the carbon, has to pronounce on the reality or acceptance value of the model. Unfortunately, the modeler appears not to consult the carbon chemist too much, and it is left to the carbon chemist to explain the limited acceptability of the adopted stractures of the modeler. [Pg.138]

Such deviations occur when distributions of adsorption site energies do not fit a Gaussian-type (or related distribution function). Then, the obtained experimental isotherm will not be linearized by the conventional Langmuir, BET and DR adsorption equations. If the continuity of the distribution curve is disturbed in some way (e.g. by selective oxidation to widen some parts of the porosity during an activation process) then deviations will occur from the model equations. Elaborations of equations to obtain a better fit are mathematical devices to correct for deviations to the distribution curves but do little to explain the causes. [Pg.158]

The two-moment ITM applied to hard sphere solutes predicts entropy convergence for those cases. Additionally, test particle simulation methods used to study more realistic, Lennard-Jones models of inert gas atoms in water also provide a reliable description of the temperature dependence of the solvation free-energy. This theoretical success permits a simpler understanding of entropy convergence. We argue as follows a continuous Gaussian distribution reliably approximates the two-moment information model,exhibits the entropy convergence, and produces an explicit result for the excess chemical potential ... [Pg.1291]

As the SIBFA approach relies on the use of distributed multipoles and on approximation derived form localized MOs, it is possible to generalize the philosophy to a direct use of electron density. That way, the Gaussian electrostatic model (GEM) [2, 14-16] relies on ab initio-derived fragment electron densities to compute the components of the total interaction energy. It offers the possibility of a continuous electrostatic model going from distributed multipoles to densities and allows a direct inclusion of short-range quantum effects such as overlap and penetration effects in the molecular mechanics energies. [Pg.160]


See other pages where Continuous models Gaussian distribution is mentioned: [Pg.377]    [Pg.93]    [Pg.154]    [Pg.186]    [Pg.172]    [Pg.2305]    [Pg.2307]    [Pg.100]    [Pg.524]    [Pg.525]    [Pg.703]    [Pg.131]    [Pg.268]    [Pg.270]    [Pg.97]    [Pg.182]    [Pg.122]    [Pg.266]    [Pg.320]    [Pg.468]    [Pg.3]    [Pg.308]    [Pg.506]    [Pg.162]    [Pg.162]    [Pg.288]    [Pg.67]    [Pg.575]    [Pg.296]    [Pg.31]    [Pg.168]    [Pg.140]    [Pg.290]    [Pg.211]   
See also in sourсe #XX -- [ Pg.524 ]




SEARCH



Continuous distributions

Continuous model

Distribution models

Gaussian distribution

Gaussian distribution models

Gaussian model

Model distributed

Modeling distribution

© 2024 chempedia.info