Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Constitute Equation

Leslie F M 1968 Some constitutive equations for liquid crystals Arch. Ration. Mech. Analysis 28 265-83... [Pg.2569]

A constitutive equation is a relation between the extra stress (t) and the rate of deformation that a fluid experiences as it flows. Therefore, theoretically, the constitutive equation of a fluid characterises its macroscopic deformation behaviour under different flow conditions. It is reasonable to assume that the macroscopic behaviour of a fluid mainly depends on its microscopic structure. However, it is extremely difficult, if not impossible, to establish exact quantitative... [Pg.3]

Material parameters defined by Equations (1.11) and (1.12) arise from anisotropy (i.e. direction dependency) of the microstructure of long-chain polymers subjected to liigh shear deformations. Generalized Newtonian constitutive equations cannot predict any normal stress acting along the direction perpendicular to the shearing surface in a viscometric flow. Thus the primary and secondary normal stress coefficients are only used in conjunction with viscoelastic constitutive models. [Pg.6]

Model (material) parameters used in viscoelastic constitutive equations... [Pg.9]

The Oldroyd-type differential constitutive equations for incompressible viscoelastic fluids can in general can be written as (Oldroyd, 1950)... [Pg.11]

The Maxwell class of viscoelastic constitutive equations are described by a simpler form of Equation (1.22) in which A = 0. For example, the upper-convected Maxwell model (UCM) is expressed as... [Pg.11]

Other combinations of upper- and lower-convected time derivatives of the stress tensor are also used to construct constitutive equations for viscoelastic fluids. For example, Johnson and Segalman (1977) have proposed the following equation... [Pg.12]

A frequently used example of Oldroyd-type constitutive equations is the Oldroyd-B model. The Oldroyd-B model can be thought of as a description of the constitutive behaviour of a fluid made by the dissolution of a (UCM) fluid in a Newtonian solvent . Here, the parameter A, called the retardation time is de.fined as A = A (r s/(ri + s), where 7]s is the viscosity of the solvent. Hence the extra stress tensor in the Oldroyd-B model is made up of Maxwell and solvent contributions. The Oldroyd-B constitutive equation is written as... [Pg.12]

All of the described differential viscoelastic constitutive equations are implicit relations between the extra stress and the rate of deformation tensors. Therefore, unlike the generalized Newtonian flows, these equations cannot be used to eliminate the extra stress in the equation of motion and should be solved simultaneously with the governing flow equations. [Pg.12]

Single-integral constitutive equations for viscoelastic fluids... [Pg.13]

Some of the integral or differential constitutive equations presented in this and the previous section have an exact equivalent in the other group. There are, however, equations in both groups that have no equivalent in the other category. [Pg.14]

Doi, M. and Edwards, S.F., 1978. Dynamics of concentrated polymer systems 1. Brownian motion in equilibrium state, 2. Molecular motion under flow, 3. Constitutive equation and 4. Rheological properties. J. Cheni. Soc., Faraday Trans. 2 74, 1789, 1802, 1818-18.32. [Pg.15]

Phan-Thien, N. and Tanner, R.T., 1977. A new constitutive equation derived from network theory, Non-Newtonian Fluid Mech. 2, 353-365. [Pg.16]

As already discussed, in general, polymer flow models consist of the equations of continuity, motion, constitutive and energy. The constitutive equation in generalized Newtonian models is incorporated into the equation of motion and only in the modelling of viscoelastic flows is a separate scheme for its solution reqixired. [Pg.71]

Equations of continuity and motion in a flow model are intrinsically connected and their solution should be described simultaneously. Solution of the energy and viscoelastic constitutive equations can be considered independently. [Pg.71]

Application of the weighted residual method to the solution of incompressible non-Newtonian equations of continuity and motion can be based on a variety of different schemes. Tn what follows general outlines and the formulation of the working equations of these schemes are explained. In these formulations Cauchy s equation of motion, which includes the extra stress derivatives (Equation (1.4)), is used to preseiwe the generality of the derivations. However, velocity and pressure are the only field unknowns which are obtainable from the solution of the equations of continuity and motion. The extra stress in Cauchy s equation of motion is either substituted in terms of velocity gradients or calculated via a viscoelastic constitutive equation in a separate step. [Pg.71]

In general, the utilization of integral models requires more elaborate algorithms than the differential viscoelastic equations. Furthermore, models based on the differential constitutive equations can be more readily applied under general concUtions. [Pg.80]

The first finite element schemes for differential viscoelastic models that yielded numerically stable results for non-zero Weissenberg numbers appeared less than two decades ago. These schemes were later improved and shown that for some benchmark viscoelastic problems, such as flow through a two-dimensional section with an abrupt contraction (usually a width reduction of four to one), they can generate simulations that were qualitatively comparable with the experimental evidence. A notable example was the coupled scheme developed by Marchal and Crochet (1987) for the solution of Maxwell and Oldroyd constitutive equations. To achieve stability they used element subdivision for the stress approximations and applied inconsistent streamline upwinding to the stress terms in the discretized equations. In another attempt, Luo and Tanner (1989) developed a typical decoupled scheme that started with the solution of the constitutive equation for a fixed-flow field (e.g. obtained by initially assuming non-elastic fluid behaviour). The extra stress found at this step was subsequently inserted into the equation of motion as a pseudo-body force and the flow field was updated. These authors also used inconsistent streamline upwinding to maintain the stability of the scheme. [Pg.81]

In the decoupled scheme the solution of the constitutive equation is obtained in a separate step from the flow equations. Therefore an iterative cycle is developed in which in each iterative loop the stress fields are computed after the velocity field. The viscous stress R (Equation (3.23)) is calculated by the variational recovery procedure described in Section 1.4. The elastic stress S is then computed using the working equation obtained by application of the Galerkin method to Equation (3.29). The elemental stiffness equation representing the described working equation is shown as Equation (3.32). [Pg.85]

The integrals in Equation (3.32) are found using a quadrature over the element domain The viscoelastic constitutive equations used in the described model are hyperbolic equations and to obtain numerically stable solutions the convection terms in Equation (3.32) are weighted using streamline upwinding as (inconsistent upwinding)... [Pg.85]

In generalized Newtonian fluids, before derivation of the final set of the working equations, the extra stress in the expanded equations should be replaced using the components of the rate of strain tensor (note that the viscosity should also be normalized as fj = rj/p). In contrast, in the modelling of viscoelastic fluids, stress components are found at a separate step through the solution of a constitutive equation. This allows the development of a robust Taylor Galerkin/ U-V-P scheme on the basis of the described procedure in which the stress components are all found at time level n. The final working equation of this scheme can be expressed as... [Pg.136]

Solution of the flow equations has been based on the application of the implicit 0 time-stepping/continuous penalty scheme (Chapter 4, Section 5) at a separate step from the constitutive equation. The constitutive model used in this example has been the Phan-Thien/Tanner equation for viscoelastic fluids given as Equation (1.27) in Chapter 1. Details of the finite element solution of this equation are published elsewhere and not repeated here (Hou and Nassehi, 2001). The predicted normal stress profiles along the line AB (see Figure 5.12) at five successive time steps are. shown in Figure 5.13. The predicted pattern is expected to be repeated throughout the entire domain. [Pg.157]

A similar approximation should be applied to the components of the equation of motion and the significant terms (with respect to ) consistent with the expanded constitutive equation identified. This analy.sis shows that only FI and A appear in the zero-order terms and hence should be evaluated up to the second order. Furthermore, all of the remaining terms in Equation (5.29), except for S, appear only in second-order terms of the approximate equations of motion and only their leading zero-order terms need to be evaluated to preserve the consistency of the governing equations. The term E, which only appears in the higlier-order terms of the expanded equations of motion, can be evaluated approximately using only the viscous terms. Therefore the final set of the extra stress components used in conjunction with the components of the equation of motion are... [Pg.165]


See other pages where Constitute Equation is mentioned: [Pg.3]    [Pg.8]    [Pg.9]    [Pg.9]    [Pg.11]    [Pg.13]    [Pg.16]    [Pg.18]    [Pg.79]    [Pg.80]    [Pg.80]    [Pg.80]    [Pg.89]    [Pg.89]    [Pg.90]    [Pg.95]    [Pg.112]    [Pg.150]    [Pg.150]    [Pg.151]    [Pg.153]    [Pg.153]    [Pg.155]    [Pg.156]    [Pg.164]    [Pg.164]   
See also in sourсe #XX -- [ Pg.118 ]




SEARCH



Constitutive equations equation)

© 2024 chempedia.info